幂函数与二次函数教案6篇

时间:
Indulgence
分享
下载本文

教案的编写过程中,教师需要关注教学法律法规和教育政策,确保教学活动的合法性和规范性,一个成功的教案应该能够激发学生的学习兴趣和积极性,下面是报喜范文网小编为您分享的幂函数与二次函数教案6篇,感谢您的参阅。

幂函数与二次函数教案6篇

幂函数与二次函数教案篇1

二次函数的应用

教学设计思想:本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

教学目标:

1.知识与技能

会运用二次函数计其图像的知识解决现实生活中的实际问题。

2.过程与方法

通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

3.情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

教学重点:解决与二次函数有关的实际应用题。

教学难点:二次函数的应用。

教学媒体:幻灯片,计算器。

教学安排:3课时。

教学方法:小组讨论,探究式。

教学过程:

第一课时:

Ⅰ.情景导入:

师:由二次函数的一般形式y= (a0),你会有什么联想?

生:老师,我想到了一元二次方程的一般形式 (a0)。

师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

现在大家来做下面这两道题:(幻灯片显示)

1.解方程 。

2.画出二次函数y= 的图像。

教师找两个学生解答,作为板书。

Ⅱ.新课讲授

同学们思考下面的问题,可以共同讨论:

1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

师:说的很好;

教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

问题:已知二次函数y= 。

(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

第一问很简单,可以请一名同学来回答这个问题。

生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

类似的,我们得出方程精确到百分位的正根是0.62。

对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

最后师生共同利用求根公式,验证求出的近似解。

教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

Ⅲ.练习

已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。

板书设计:

二次函数的应用(1)

一、导入 总结:

二、新课讲授 三、练习

第二课时:

师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

师:好,看这样一个问题你能否解决:

活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:

1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。

3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

学生思考,并小组讨论。

解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

由面积公式得 y= (x )

化简得 y=

代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

画函数图像:

通过图像,我们知道y的最大值为5。

师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

师:现在利用我们前面所学的知识,解决实际问题。

活动2:如图34-11,已知ab=2,c是ab上一点,四边形acde和四边形cbfg,都是正方形,设bc=x,

(1)ac=______;

(2)设正方形acde和四边形cbfg的总面积为s,用x表示s的函数表达式为s=_____.

(3)总面积s有最大值还是最小值?这个最大值或最小值是多少?

(4)总面积s取最大值或最小值时,点c在ab的什么位置?

教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

解答过程(板书)

解:(1)当bc=x时,ac=2-x(02)。

(2)s△cde= ,s△bfg= ,

因此,s= + =2 -4x+4=2 +2,

画出函数s= +2(02)的图像,如图34-4-3。

(3)由图像可知:当x=1时, ;当x=0或x=2时, 。

(4)当x=1时,c点恰好在ab的中点上。

当x=0时,c点恰好在b处。

当x=2时,c点恰好在a处。

[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

练习:

如图,正方形abcd的边长为4,p是边bc上一点,qpap,并且交dc与点q。

(1)rt△abp与rt△pcq相似吗?为什么?

(2)当点p在什么位置时,rt△adq的面积最小?最小面积是多少?

小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

板书设计:

二次函数的应用(2)

活动1: 总结方法:

活动2: 练习:

小结:

第三课时:

我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

(幻灯片显示交通事故、紧急刹车)

师:你知道两辆车在行驶时为什么要保持一定的距离吗?

学生思考,讨论。

师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

请看下面一个道路交通事故案例:

甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离s甲(m)与车速x(km/h)之间的关系为s甲=0.1x+0.01x2,乙车的刹车距离s乙(m)与车速x(km/h)之间的关系为s乙= 。

教师提问:1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

学生思考!教师引导。

对于二次函数s甲=0.1x+0.01x2:

(1)当s甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

(2)当s甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=m。就可利用一元二次方程 =m,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

下面看下面的这道例题:

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

v/(km/h) 40 60 80 100 120

s/m 2 4.2 7.2 11 15.6

(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

(3)求当s=9m时的车速v。

学生思考,亲自动手,提高学生自主学习的能力。

教师提问,学生回答正确答案,教师再进行讲解。

课上练习:

某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

板书设计:

二次函数的应用(3)

一、案例 二、例题

分析: 练习:

总结:

数学网

幂函数与二次函数教案篇2

教学设计

一 教学设计思路

通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。

二 教学目标

1 知识与技能

(1).经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.

(2).会利用图象法求一元二次方程的近似解。

2 过程与方法

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

三 情感态度价值观

通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想.

四 教学重点和难点

重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。

难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

五 教学方法

讨论探索法

六 教学过程设计

(一)问题的提出与解决

问题 如图,以20m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系

h=20t5t2。

考虑以下问题

(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?

(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?

(3)球的飞行高度能否达到20.5m?为什么?

(4)球从飞出到落地要用多少时间?

分析:由于球的飞行高度h与飞行时间t的关系是二次函数

h=20t-5t2。

所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。

解:(1)解方程 15=20t5t2。 t24t+3=0。 t1=1,t2=3。

当球飞行1s和3s时,它的高度为15m。

(2)解方程 20=20t-5t2。 t2-4t+4=0。 t1=t2=2。

当球飞行2s时,它的高度为20m。

(3)解方程 20.5=20t-5t2。 t2-4t+4.1=0。

因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。

(4)解方程 0=20t-5t2。 t2-4t=0。 t1=0,t2=4。

当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。

由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?

例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。

分析 可以解一元二次方程-x2+4x=3(即x2-4x+3=0) 。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。

一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。

(二)问题的讨论

二次函数(1)y=x2+x-2;

(2) y=x2-6x+9;

(3) y=x2-x+0。

的图象如图26.2-2所示。

(1)以上二次函数的图象与x轴有公共点吗?如果有,有多少个交点,公共点的横坐标是多少?

(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?

先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。

可以看出:

(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。

(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。

(3)抛物线y=x2-x+1与x轴没有公共点, 由此可知,方程x2-x+1=0没有实数根。

总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

(三)归纳

一般地,从二次函数y=ax2+bx+c的图象可知,

(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。

(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。

(四)例题

例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。

解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。

所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。

七 小结

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

?

八 板书设计

用函数观点看一元二次方程

抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系

例题

幂函数与二次函数教案篇3

二次函数的图像

略阳天津高级中学 杨 娜

课 型:新授课 课时安排: 1课时 教学目标:

1、理解二次函数中a,b,c,h,k对其图像的影响。

2、领会二次函数图像平移的研究方法,并能迁移到其他函数图像的研究,而提高识图和用图能力。

3、培养学生数形结合的思想意识。 重点难点: 1.教学重点:二次函数图像平移变换规律及应用

2.教学难点:理解平移对解析式的影响及如何利用平移变换规律求解析式,并能把平移变换规律迁移到一般函数. 教学过程:

一、导入新课

在初中我们已经学过二次函数,知道其图像为抛物线,并了解其图像的开口方向,对称轴,顶点等特征,本节课将进一步研究一般的二次函数的性质。二、讲授新课

提出问题1 二次函数y?ax(a?0)的图像与二次函数y?x的图像之间有什么关系? 1.我们先画出y?x 的图像,并在此基础上画出y?2x的图像。

学生阅读课本41页并在练习本上作图(教师用几何画板演示)2.学生阅读课本41页,并动手实践。

3.概括:二次函数y?ax(a?0)的图像可以由y?x的图像个点的纵坐标变为原来的a倍得到。 4.用几何画板演示a对开口大小得影响。5.抽象概括

?二次函数y=ax2(a≠0)的图像可由的y=x2图像各点纵坐标 变为原来的a倍得到。

?a决定了图像的开口方向:a>o开口向上,a?a决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大 6.练习列二次函数图像开口,按从小到大的顺序排列为_ 11(1)f(x)=x2;(2)f(x)=x242

问题

212(3)f(x)=-x;(4)f(x)=-3x23函数y?a(x?h)2?k(a?0)的图像与函数y?ax2(a?0)的图像之间有什么关系呢?

1.我们先一起回顾y?2x2与y=2(x+1)2+3图像的关系。(教师用几何画板演示)

在初中我们已经知道,只要把y?2x2的图像向左平移1个单位长度,再向上平移3个单位长度,就可以得到y=2(x+1)2+3的图像。它们形状相同,位置不同(如图2-22)。2.学生动手实践想想并回答课本上的问题2。3.概括:二次函数y=a(x+h)2+k(a?0), ①a决定了二次函数图像的开口大小及方向;

而且“a正开口向上,a负开口向下”;|a|越大开口越小; ②h决定了二次函数图像的左右平移,而且“h正左移,h负右移”; ③k决定了二次函数图像的上下平移,而且“k正上移,k负下移”。

问题3 y?ax(a?0)和y?ax?bx?c(a?0)的图像之间有什么关系? 1.我们先来回顾y?2x与y?2x?4x?1的图像关系(教师在黑板演示,可以转化为顶点式)

至此我们知道把y?2x的图像向左平移1个单位长度,再向下平移3个单位长度,就可以得到y?2x?4x?1的图像(如图2-23)。

2.动画演示y?ax?bx?c(a?0)中a,b,c对图像的影响。 3.概括:

⑴一般地,二次函数y=ax2+bx+c(a≠0),通过配方可以得到它的恒等形式y=a(x+h)2 +k,从而知道可以由y=ax2 的图像

通过平移得到y=ax2+bx+c(a≠0)的图像.⑵a决定了二次函数图像的开口大小及方向;

而且“a正开口向上,a负开口向下”;|a|越大开口越小;b影响了图像的位置不仅上下平移而且左右平移;c决定了图像与坐标轴y轴的交点位置,c>0 交点在y轴上半轴,c三、巩固练习

1.完成课后练习题1,2,3 2.把下列二次函数一般式化为顶点式:

① y?x2?8x?9 ② y??2x2?12x?16 ③y?ax2?bx?c(a?0)3.把y?x2的图像经过怎样平移可得到y?x2?8x?9的图像?

4.将二次函数y=3x2的图像平行移动,顶点移到(-3,2),则它的解式为?

5..二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x2+1,f(x)图像的顶点为(3,2),则f(x)的表达式为什么? 四.小结

1.回顾二次函数y?a(x?h)2?k(a?0)中,h,k对函数图像有何影响?

二次函数y?ax?bx?c(a?0)中,确定函数开口大小及方向的参数是什么?确定函数位置的参数是什么?

2.我们经历了y?x到y?ax2(a?0),y?ax2(a?0)到y?a(x?h)2?k(a?0),通过这个过程,我们就能体会y?ax2(a?0)到y?ax2?bx?c(a?0)的图像变化过程,到研究一般函数的拓展过程。 五.作业

完成课后习题题。六.板书设计

二次函数再研究

问题1 演算过程 练习题 问题2 结论 问题3 附加题:

将二次函数y??2x的图像平移顶点移到下列各点,写出对应的函数解析式。⑴(4,0);⑵(0,-2);⑶(-3,2)⑷(3,-1)222

幂函数与二次函数教案篇4

一、说课内容:

苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

二、教材分析:

1、教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:

1、从创设情境入手,通过知识再现,孕伏教学过程

2、从学生活动出发,通过以旧引新,顺势教学过程

3、利用探索、研究手段,通过思维深入,领悟教学过程

四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

?设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.

(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?

解:s=πr(r>0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x+10x (0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)

=100(x+2x+1)

= 100x+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

?设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

巩固对二次函数概念的理解:

1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

3、为什么二次函数定义中要求a≠0 ?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

5、b和c是否可以为零?

由例1可知,b和c均可为零.

若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

?设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)+1 (2)

(3)s=3-2t (4)y=(x+3)- x

(5) s=10πr (6) y=2+2x

(8)y=x4+2x2+1(可指出y是关于x2的二次函数)

?设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关

于x的函数关系式。

?设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。

(1)分别写出s与x,v与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

?设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为ccm,圆柱的体积为vcm3

(1)分别写出c关于r;v关于r的函数关系式;

(2)两个函数中,都是二次函数吗?

?设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.

?设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

(五)拓展延伸

1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.

?设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

2.确定下列函数中k的值

(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

?设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

(六) 小结思考:

本节课你有哪些收获?还有什么不清楚的地方?

?设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

(七) 作业布置:

必做题:

1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

选做题:

1.已知函数 是二次函数,求m的值。

2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

?设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

五、教学设计思考

以实现教学目标为前提

以现代教育理论为依据

以现代信息技术为手段

贯穿一个原则——以学生为主体的原则

突出一个特色——充分鼓励表扬的特色

渗透一个意识——应用数学的意识

幂函数与二次函数教案篇5

教学目标

(一)教学知识点

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、

(二)能力训练要求

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、

2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、

3、通过学生共同观察和讨论,培养大家的合作交流意识、

(三)情感与价值观要求

1、经历探索二次函数与一元二次方程的关系的.过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、

2、具有初步的创新精神和实践能力、

教学重点

1、体会方程与函数之间的联系、

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、

教学难点

1、探索方程与函数之间的联系的过程、

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、

教学方法

讨论探索法、

教具准备

投影片二张

第一张:(记作§2、8、1a)

第二张:(记作§2、8、1b)

教学过程

Ⅰ、创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、

幂函数与二次函数教案篇6

教学目标

(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;

(2)培养学生的归纳、总结能力;

(3)通过两圆外公切线长的求法向学生渗透“转化”思想。

教学重点

理解两圆相切长等有关概念,两圆外公切线的求法。

教学难点

两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。

教学活动设计

(一)实际问题(引入)

很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)

两圆的公切线概念

1、概念:

教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:

和两圆都相切的直线,叫做两圆的公切线。

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。

(3)公切线的长:公切线上两个切点的距离叫做公切线的长。

2、理解概念:

(1)公切线的长与切线的长有何区别与联系?

(2)公切线的长与公切线又有何区别与联系?

(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。

(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。

(三)两圆的位置与公切线条数的关系

组织学生观察、概念、概括,培养学生的学习能力。添写教材p143练习第2题表。

(四)应用、反思、总结

例1 、已知:⊙o 1 、⊙o 2的半径分别为2cm和7cm,圆心距o 1 o 2 =13cm,ab是⊙o 1 、⊙o 2的外公切线,切点分别是a、b。求:公切线的长ab。

分析:首先想到切线性质,故连结o 1 a、o 2 b,得直角梯形ao 1 o 2 b。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)

解:连结o 1 a、o 2 b,作o 1 a⊥ab,o 2 b⊥ab。

过o 1作o 1 c⊥o 2 b,垂足为c,则四边形o 1 abc为矩形,

于是有

o 1 c⊥c o 2,o 1 c= ab,o 1 a=cb。

在rt△o 2 co 1和。

o 1 o 2 =13,o 2 c= o 2 b- o 1 a=5

ab= o 1 c= (cm)。

反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。

例2* 、如图,已知⊙o 1 、⊙o 2外切于p,直线ab为两圆的公切线,a、b为切点,若pa=8cm,pb=6cm,求切线ab的长。

分析因为线段ab是△apb的一条边,在△apb中,已知pa和pb的长,只需先证明△pab是直角三角形,然后再根据勾股定理,使问题得解。证△pab是直角三角形,只需证△apb中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过p作两圆的公切线cd如图,因为ab是两圆的公切线,所以∠cpb=∠abp,∠cpa=∠bap。因为∠bap+∠cpa+∠cpb+∠abp=180°,所以2∠cpa+2∠cpb=180°,所以∠cpa+∠cpb=90°,即∠apb=90°,故△apb是直角三角形,此题得解。

解:过点p作两圆的公切线cd

∵ ab是⊙o 1和⊙o 2的切线,a、b为切点

∴∠cpa=∠bap∠cpb=∠abp

又∵∠bap+∠cpa+∠cpb+∠abp=180°

∴ 2∠cpa+2∠cpb=180°

∴∠cpa+∠cpb=90°即∠apb=90°

在rt△apb中,ab 2 =ap 2 +bp 2

说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。

(五)巩固练习

1、当两圆外离时,外公切线、圆心距、两半径之差一定组成()

(a)直角三角形(b)等腰三角形(c)等边三角形(d)以上答案都不对。

此题考察外公切线与外公切线长之间的差别,答案(d)

2、外公切线是指

(a)和两圆都祖切的直线(b)两切点间的距离

(c)两圆在公切线两旁时的公切线(d)两圆在公切线同旁时的公切线

直接运用外公切线的定义判断。答案:(d)

3、教材p141练习(略)

(六)小结(组织学生进行)

知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

能力:归纳、概括能力和求外公切线长的能力;

思想:“转化”思想。

(七)作业:p151习题10,11。

幂函数与二次函数教案6篇相关文章:

教案雪孩子教案6篇

腊八粥教案教案6篇

交通安全教案教案通用6篇

拼音i教案大班教案最新6篇

区角活动教案教案精选6篇

中班安全教案教案反思6篇

父亲节教案教案精选6篇

大班社会教案垃圾分类教案最新6篇

大班教案健康教案及反思6篇

大班教案刷刷牙教案反思6篇

幂函数与二次函数教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
89872