作为教师应该及时写好教学反思来提升自己的教学能力,教学任务结束之后我们要有写教学反思的习惯,以下是报喜范文网小编精心为您推荐的策略问题教学反思6篇,供大家参考。
策略问题教学反思篇1
1、课前沟通不到位。
在一个陌生的环境,又有一些老师听课,孩子们本来就紧张,课前不仅没有做到及时与孩子们沟通,帮助他们减压,还用录播开始无形中又增加了压力,以至于原来在教室里积极活跃的孩子们,一个个下的`正襟危坐、不敢越雷池一步,甚至到前面板演时腿发抖。作为教师课前一定要关注孩子的状态,及时做出调整。
2、课堂预设不到位。
在让两个孩子板演计算过程环节用时过长,以至于虽然完成了研究、总结、提炼出了解决两个未知量的问题可以用假设策略,但是没有时间做一些相应练习去加深印象。如果在学生选择方法书写环节意识到这一点,调整成投影展示,不仅可以完成强调步骤的完整条理,也可以空出时间加大练习。
虽然本节课没有完美落幕,虽然课堂练习度没有达到,但是在独立思考、小组交流、全班汇报,比较提炼假设策略等环节中,孩子们了解了什么情况下可以用假设,假设的关键是什么,假设的目的是什么,在假设时什么量不变,什么量改变。书写巡视中发现虽然步骤不是太完整,但是都能用自己喜欢的方法把假设策略表达出来。课堂上不可能做到面面俱到,本节课只要让孩子们了解到这些,在下节课着重强调书写格式是不是会更好!
策略问题教学反思篇2
12月11日教研室成员来我校常规调研,汪主任听了我的一节《解决问题的策略》,课前我是这样思考的:学生在例题1中初步体验了替换的策略,教学例题2时要主动应用这些策略解决实际问题。教材鼓励学生解决问题方法的多样化,所以在实际教学中,我要注意把握。如:提出的假设可以是多样的。教材呈现了两种比较典型的假设,即假设10只都是大船和假设大船和小船各5只。另外开展替换活动的载体可以是多样的,图画枚举和列表枚举等,这些都是已经教学的解决问题的策略,学生有能力应用这些策略。结合使用画图、列表、枚举,也体现了解决问题的策略是综合而灵活的。
教学例题2时,一是组织猜想,引发假设,拓展思路。在创设情境后可以让学生猜一猜可能是10只怎样的船。通过猜想启发学生思路,引导学生指出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。二是验证假设,引导替换,有序思考。每一个学生都要对自己的假设进行验证,看这些船是否正好能坐42人。如果学生的假设多样了,那么大多数假设都不是问题的答案,需要调整,即进行相应的替换。学生的替换活动逐步进行, 培养学生有序思考的习惯。三是交流解法,寻找共性,体验策略。可以先交流各种假设与替换的方法,以及采用画图或列表的策略,发展思维的开放性与灵活性,再寻找这些方法的共同特点,进一步体会解决问题的策略。
例题2是综合运用多种策略解决实际问题,所以学生思考的空间大了,难度高了。对于教材上出现的画图假设,列表假设,等等,都可以肯定,在教学中不必要求学生掌握每种方法,可选择自己最合适的方法理解。并且要让学生体会到,例题2中介绍的画图假设、列表假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图列表等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。
课后经过汪主任的评点,使我对教材有了更深层次的.领悟。特别是对假设这个策略,最后提炼出经典的4个词假设比较调整检验4个步骤,这是我课上没有概括出来的。虽然我是按照这几步来做的。但没有概括出来,学生仅仅停留在解决问题上。学生还处于模仿状态。
解决问题的策略这一单元是新课程的一个创新,以前所没有涉及的,我在教学中也是努力在学习。往往是拿到教材,先翻阅教师用书,看看前人是怎样总结的,他的意图怎样,但往往会框住我们的思维,所以汪主任鼓励我们要有自己的思考,自己的创新。这是我要努力的方向。让我以三个学来勉励自己:教学也;始于自学学也;终于教人,学也。
策略问题教学反思篇3
9月27日听取了学校高年级数学组曹老师执教的五年级数学《解决问题的策略》一课,听后很有感触,现表述如下:
1、在探索中疑惑。
?解决问题的策略》这一课如何让学生知道与应用列举法,靠灌是不能形成的,也不能让学生掌握的。如何让学生生成这一解决问题的策略?探索——发现——归纳是一个很好的途径。如例1,学生在有多少种不同的围法,一开始是无序的找出每一种,这是探索规律人之常情的方法,当这种无序的方法获得答案学生感到不满意时,他们也在寻求一种解决问题的好办法,这时学生茫然,指望老师指定迷津。
2、在疑惑中引导。
学生既然有迷津,他们会积极思考,努力听取别人解决问题的方法。这时教师加以引导,指导学生对自己解决问题的方法进行优化,促使学生进行有序思考,自然形成采用列举法获得不同的围法,比如进行列表,借助列表进行有序思考,例1,宽1米,长8米、宽2米,长7米、宽3米,长6米……,比如进行一定的'顺序找答案,练一练中第一次投中10环,第二次可能是10环、8环、6环;第一次投中8环、6环,第二次可能是投中10环、8环、6环……经过删除重复的,就轻松地获得答案,用这一方法解决问题全面,无遗漏,无重复。
3、在引导中发现。
在教学例1时,当学生无序时,教师引导学生进行有序的观察、分析有多少种不同的围法,然后找出规律,对解决这一问题形成的规律进行反思和总结,自然就产生出解决问题的策略——列举法。在练习时通过应用更加发现应用列举法解决问题容易获得解决问题的结果。
策略问题教学反思篇4
教学内容:教科书63—64页,例一、例二和练一练
教学目标:
1:使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找到符合要求的所以答案。
2:使学生早对解决简单实际问题过程的反思和交流中,感受一一列举的特点和价值。
教学过程:
一、教学例一
1、出示立体及其场景图,读题
2、提问:你能根据题意,用18根同样长的小棒先围成一个长方形?你能通过有条理的操作把不同的围法都找出来吗?
3、学生分组活动,组织交流,并把不同的围法有条理地画在黑板上。
4、提问:用18根1米长的栅栏围成的长方形羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?
提出要求:你能把符合要求的长和宽一一列举出来吗?并找出一共有多少种不同的围法吗?
学生在表格里填一填。
追问:通过一一列举,你能发现一共有多少种不同的围法?
5、谈话:联系刚才解决问题的过程,你能说说你有什么体会?
提出:有条理地一一列举是解决这个问题的基本策略。
6、请你算出未围成的长方形的`面积,并比较它们的长、宽和面积。
二、教学例二
1出示例题机器场景图,指名读题后,提问“最少订阅1本,最多订阅3本”是什么意思?
2、提问:你准备用什么策略解决这个问题?列举时,打算先考虑订阅几本的情况?接下去又要怎样思考呢?
3、学生小组讨论后,进一步追问:如果只订阅1本,有几种方法?3种呢?订2本呢?
4、给你一张表格,你会用打√的方法确定具体的订阅本数吗?
5、联系刚刚的过程,你认为要得到全部的答案,列举时要注意什么?
“既不遗漏,也不重复”
三、应用巩固
练一练,
提问:你打算用什么样的方法解决这个问题?
学生解题后,组织交流,引导学生有条理地表达列举思考时的过程。
四、课堂作业
策略问题教学反思篇5
转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。所以,转化是一种常见的、极其重要的解决实际问题的方法。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。下面就解决问题的策略(转化策略)这一单元教学谈谈自己的得失:
一、感悟转化
运用转化的策略解决问题的关键是确定转化后要实现的目标和转化的具体方法。通常是把新的问题转化成熟悉的.、能够解决的问题,把非常规的问题转化成常规的问题等,但要根据问题的具体情况具体分析。由于转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。所以在开始的图形转化中,我放手让学生从不同的角度来理解、进行比较,感悟转化策略的优越性。
二、体验转化
策略不能直接从外部输入,只能在方法的实施过程中通过体验获得。体验是心理活动,是在亲身经历的过程中获得的意识与感受。例2在解决较复杂的分数问题时应用转化策略,进一步体验转化的意义。有利于学生在体验策略的同时,归纳和总结具体的操作方法,使学生对面积问题中的转化策略有一个完整、系统的再体验和升华。这不仅从数学思想层面提升学生的素养,而且更从解决问题的具体方法上面给学生以丰富的经验积累。具体方法的丰富反过来又深化了对转化策略的认识,这样形成的策略才能深深扎根学生的心田,才具有方法论意义上的指导、调控作用。
三、反思转化
策略的有效形成必然伴随着对自己行为的不断反思。在教学的过程中,及时地引导学生对自己解决问题的过程进行反思,有利于提高学生对自身形成策略过程的认识,从而也更加有利于学生加深对策略的进一步理解。在学习过程中,学会合作交流,经常反思,不断调整,是一种高层次的认知能力,因此我在本节课教学中,充分关注学生的自我评价与回顾反思等习惯的形成。
策略问题教学反思篇6
[教学内容]义务教育课程标准实验教科书《数学》(苏教版)五年级下册“解决问题的策略”单元的第一课时,教学“用倒推(还原)”的策略分析数量关系解决实际问题。回顾两个片段,针对解决实际问题的策略应该主意的问题进行剖析:
[片段一]
师:同学们,上课前我们玩了一个“抢10”的游戏,现在我们再来玩个游戏,好吗?
生:好。
师:现在我们来玩“猜牌”游戏。(出示自制的4张大扑克牌,反面向上贴在黑板上。并从左往右在每张牌的上方标上1、2、3、4四个序号。)
师:现在我将1号位与3号位上的两张牌互换,再把牌全部翻过来正面向上,从左往右分别是7、6、3、9。(教师边说边操作)
师:你知道原来从左往右分别是什么牌吗?
生:原来从左往右分别是3、6、7、9。
师:大家同意吗?
生(齐):同意。
师:现在老师要加大难度了。(教师将四张扑克牌背面向上,打乱次序。)
师:如果先把1号位的牌与3号位的牌互换,再把3号位的牌与2号位的牌互换,最后将牌全部翻过来,现在你知道原来从左往右分别是什么牌吗?(老师边说边操作)
生:原来从左往右应该分别是9、7、6、3。
师:你是怎么想的?说说理由。
生:我只是在头脑中将刚才老师换的牌倒过来换回去。
师:请你上来换一换给大家看一看原来的次序是不是9、7、6、3。(学生操作)
师:看来要想知道扑克牌原来的顺序,只要把变化的过程倒过来操作就行了。
师:刚才大家玩的两个游戏都是从结果往前顺藤摸瓜来推想,从结果开始想也就是倒过来想,这是一种思考问题的策略,在我们数学学习中也有广泛的应用。
……
[片段二]
师出示例1:甲乙两杯果汁共有400毫升,现在从甲杯倒入乙杯40毫升,这时两杯一样多。原来两杯果汁各有多少毫升?
师:读题后能说说你的想法吗?
生1:现在甲、乙两杯同样都是200毫升,只要把刚才倒入乙杯的40毫升倒回到甲杯就可以了。
生2:甲杯倒入乙杯40毫升后,两杯相等,说明甲杯在没倒前应该比乙杯多80毫升,这样也能解
决问题。师:把乙杯的40毫升再倒还给甲杯,是个不错的建议,简单易行,这样一来甲、乙两杯果汁就恢复到原来的样子了。
师:谁想演示给大家看看。(一学生演示,将乙杯的40毫升果汁倒回到甲杯中。)
师:现在大家可以看得出原来甲乙两杯果汁各是多少毫升?
生(齐):甲杯240毫升,乙杯160毫升。
师:我们每解决一个数学问题都要找来一些器具做实验,这样烦不烦呀?有什么好办法吗? 生:用倒过来的策略思考,两杯果汁共有400毫升,这时两杯一样多,说明每杯有200毫升,将乙
杯中的40毫升倒回去:
200-40=160(毫升)……原来乙杯
200+40=240(毫升)……原来甲杯
……
[自我反思]本节课关注学生的精神世界和生命意义的建构,注重了学生的切身体验和感悟。1.在情境中体验。学生体验的过程是一个主观能动的过程。因此注意了巧设情境,诱发学生的体验。在上课前创设了一个抢数比赛的.游戏,将学生置身于一个充满乐趣且富有挑战性的游戏情境之中。当学生认识与发现报数规律后不急于指出采用的是倒过来想的思考方法,而是让学生进一步在翻牌游戏中积累更多的切身体验,伴随着体验活动中获得的成功与失败,学生产生了积极的情感。2.在体验中感悟。在数学活动中,学生仅有体验是不够的,还要让学生思维得到发展。在教学中放手让学生在独立思考中去尝试,在体验后集体思辨,这样学生经历了一个自我选择与自我判断的过程,在扬弃的同时对各种解法进行了自我优化,从而对运用倒过来想的策略解决这类特殊的问题有了更为深刻的感悟。
策略问题教学反思6篇相关文章:
★ 镜子教学反思6篇
★ 小猫教学反思6篇
★ 国画教学反思6篇