统计与概率的教案7篇

时间:
Lonesome
分享
下载本文

教案是现在课堂上必不可少的准备工作,优秀的教案可以帮助我们提升教学质量,下面是报喜范文网小编为您分享的统计与概率的教案7篇,感谢您的参阅。

统计与概率的教案7篇

统计与概率的教案篇1

设计说明

1、重视提出启发性的问题,引导学生主动探究。

在教学时,首先帮助学生归纳整理统计的相关知识,然后提出一系列富有启发性的问题,让学生自己去思考,去探究,使学生的思维一直处于活跃状态,把学习的主动权真正交给学生。

2、重视对统计表的观察和分析。

在复习统计知识时,引导学生观察复式统计表,发现有价值的信息,从而正确地解决问题。同时引导学生通过观察,发现复式统计表的优点,让学生感受到不同形式的统计表的使用条件,从而联系实际恰当地选择统计表。

课前准备

教师准备ppt课件

学生准备复式统计表

教学过程

导入复习

整理复习复式统计表的相关知识

1、复式统计表的优点和使用条件。

师:谁能说说在什么情况下可以使用复式统计表?复式统计表和单式统计表相比有哪些优点?

学生小组讨论后汇报:

(1)在反映两个(或多个)统计内容的数据时可以使用复式统计表。

(2)复式统计表可以更加清晰、明了地反映数据的情况以及两个(或多个)数据变化的差异,为统计工作带来了很大的益处和帮助。

2、复习复式统计表的制作。

(1)引导学生回顾复式统计表的结构。

课件展示一个复式统计表,学生观察后汇报:复式统计表一般包括:标题、日期、表格(表头、横栏、纵栏、数据)。

(2)回顾绘制复式统计表的方法。

学生以小组为单位交流,然后师生共同回顾绘制复式统计表的方法:

①确定统计表的名称,填写制表日期。

②确定统计表的行数和列数。

③制作表头,填写表头中各栏类别。

④填写数据并核对。

3、出示教材110页3题。

(1)学生独立解决前两个问题,汇报结果。

(2)引导学生提出其他数学问题,并解决。

统计与概率的教案篇2

一、设计说明

本节课是对本册有关统计知识的系统复习。重点复习的内容有扇形统计图的意义、特点以及从扇形统计图中获取信息和结合扇形统计图解决问题。本节复习课在教学设计上有如下特点:

1、谈话回顾,建立联系

通过谈话,唤醒学生已有的知识经验,能促进教学任务的有效完成。上课伊始,根据复习课的特点和知识结构,进行关键点的有效回顾,帮助学生与接下来的学习内容建立联系。这样的设计,符合教育的本真,即教育的任务在于激励、唤醒。

2、充分发挥小组合作、讨论的作用

?数学课程标准》中强调,小组合作是数学学习的一种重要方式,在小组合作中,学生的倾听能力、组织能力、思考能力都会得到锻炼与提升。在复习中重视小组合作、讨论的作用,给学生充分的讨论时间,让学生在讨论、交流中突破教学重难点,进一步理解各种统计图的特征,并学会根据统计图分析数据。

二、课前准备

ppt课件。

三、教学过程

(一)谈话导入

1、我们一共学过哪几种统计图?

条形统计图、折线统计图、扇形统计图。

这几种统计图分别具有什么特点?

(1)小组内交流。

(2)学生汇报。

生1:条形统计图的特点是很容易比较各种数量的多少。

生2:折线统计图的特点是不但可以表示数量的多少,还可以清楚地看出数量的增减变化情况。

生3:扇形统计图的特点是能清楚地表示各部分数量与总数之间的关系。

2、什么是扇形统计图?

扇形统计图用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分比。

(二)复习用扇形统计图知识解决问题

1、根据扇形统计图解决问题

课件出示教材114页6题。

我国城市空气质量正逐步提高,在2010年监测的330个城市中,有273个城市空气质量达到二级标准。监测城市的空气质量情况如下图所示。

(1)空气质量达到三级标准的城市有多少个?

(2)了解你所在城市的空气质量,讨论一下如何提高空气质量。

2、解决问题

(1)解决问题(1)

①思考:题中的有效信息有哪些?无用信息有哪些?

②汇报。

生1:题中“有273个城市空气质量达到二级标准”是无用信息。

生2:对于问题(1)而言,题中“330个城市”和“16.1%”是有效信息。

③根据统计图算出空气质量达到三级标准的城市有多少个。

330×16.1%≈53(个)

(2)解决问题(2)

①组内交流:说一说你所在城市的空气质量问题。

②全班交流:如何提高空气质量?

生1:要改善取暖工程。

生2:加强环保意识。

生3:严禁开私家车,统一乘坐公交车,这样避免二氧化碳大量排放。

生4:减少工厂废气排放。

(三)巩固练习

1、小红收集的各种邮票统计如上图。

(1)小红收集的风景邮票、人物邮票和建筑邮票数量的比是( )。

(2)小红收集的( )邮票数量最多。

(3)小红共收集了200张邮票,其中风景邮票有( )张。

2、完成教材117页17题。

(四)课堂总结

通过这节课的复习,你有什么收获?

(五)布置作业

统计与概率的教案篇3

教学内容

教科书第119~120页例2和第121页课堂活动,练习二十三的第5~7题。

教学目标

1.通过复习使学生能进一步熟练地判断简单事件发生的可能性。

2.通过复习使学生能熟练地用分数表示事件发生的概率,并且会用概率的思维去观察、分析和解释生活中的现象。

3.通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。

教学过程

一、导入

教师:在老师的盒子里有5个球,从中摸出1个球,如果摸到的球是红色就可获得奖品。你希望里面的球是些什么颜色,为什么?如果你是老师你会装些什么颜色的球?为什么?刚才的活动涉及我们学过的什么知识?这节课我们一起来复习可能性。

板书课题:概率复习。

二、回顾整理有关可能性的知识

(1)教师:有关可能性的知识你还记得哪些?请在小组内交流。

(2)请学生汇报,并请其他同学补充。

学生:事件发生的可能性是有大小的。

学生:有些事件的发生是确定的,有些则是不确定的。

学生:有些事件的发生是一定的,有些事件的发生是有可能的,还有些事件的发生是不可能的。

三、教学例2

1.复习体会简单事件发生的三种可能性

教师出示一副扑克,当众从中取走j,q,k和大小王。

教师:现在从中任抽一张,请你判断下面事件发生的可能性。

(1)抽到的牌上的数比11小。

学生:一定发生,因为剩下的所有扑克点数都比11小。

(2)抽到的牌是黑桃q。

学生:不可能发生,因为所有的q都被拿走了。

(3)抽到的牌是方块2。

学生:有可能发生,因为方块2还在老师手中。

2.复习体会事件发生的可能性有多少种

教师:从老师手中的扑克中任意抽取一张,会有哪些可能的结果呢?

教师:按照花色分有黑桃、红桃、方块和梅花四种可能性。

教师:按照数字分有1到10共十种可能性。

3.用分数表示事件发生的概率

教师:抽到各种牌的可能性究竟是多少呢?请大家独立完成第120页算一算的5道题。

学生独立完成之后全班交流。

学生:抽到黑桃的可能性是14,因为一共只有四种花色的扑克;还可以这样理解,一共有40张扑克,其中有10张黑桃,所有抽到黑桃的可能性是14。

学生:抽到5的可能性是110,因为按照数字分只有1到10这10种可能,5占其中的一种,所以抽到5的可能性是110;也可以这样理解,40张扑克中有4张5,抽到5的可能性是110。

学生:抽到梅花a的可能性是140,因为在40张扑克中只有1张梅花a。

学生:抽到a和抽到梅花a的可能性不一样大,因为抽到a的可能性是110,抽到梅花a的可能性是140。

学生:在40张牌中任意抽1张抽到5的可能性是110,在10张黑桃中任意抽1张抽到5的可能性也是110。

四、完成课堂活动

(1)学生独立完成,如果有困难可以先让学生说一说1到20的奇数、偶数、质数、合数分别是哪些?

(2)集体交流。

学生:摸到奇数的可能性是12,摸到偶数的可能性是12,摸到质数的可能性是25,摸到合数的可能性是1120。

五、全课小结

教师:通过这节课的复习有什么收获?有什么疑问?有什么要提醒大家需注意的地方?

六、课堂练习

学生独立完成练习二十三的第5,6,7题。

统计与概率的教案篇4

一、随机事件和概率

考试要求

1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式。

3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。

二、随机变量及其分布

考试要求

1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(poisson)分布及其应用。

3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。

4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布 、指数分布及其应用,其中参数为的指数分布的概率密度为

5.会求随机变量函数的分布。

三、多维随机变量及其分布

考试要求

1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的'概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率。

2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件。

3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.

4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。

四、随机变量的数字特征

考试要求

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。

2.会求随机变量函数的数学期望。

五、大数定律和中心极限定理

考试要求

1.了解切比雪夫不等式。

2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。

3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)。

六、数理统计的基本概念

考试要求

1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为

2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算。

3.了解正态总体的常用抽样分布。

统计与概率的教案篇5

一、教学目标

(一)知识与技能

让学生经历收集数据、整理数据、分析数据的活动,使他们在解决问题的整个过程中进一步巩固所学的统计知识,培养梳理知识结构的能力。

(二)过程与方法

通过整理、分类、制图、观察、比较、分析信息,形成统计观念,进而形成依据数据和事实来分析和解决问题的方法。

(三)情感态度和价值观

使学生进一步体会数学与生活的紧密联系,形成尊重事实、用数据说话的态度,形成科学的世界观与方法论。

二、教学重难点

能根据收集的数据制成合适的统计表和统计图。

三、教学准备

多媒体课件,作业纸。

四、教学过程

(一)谈话引入,复习旧知识

教师:同学们,今天这节课,我们要一起来复习统计与概率的知识。首先,请大家回忆一下,在小学阶段我们学过哪些统计知识?你能在草稿本上尽可能多地列举出来吗?

学生独立完成后,教师继续引导:同桌之间互相交流和补充,然后想一想,可以怎样对这些知识进行分类整理?

讨论交流后,依据学生回答,课件出示下图。

教师:谁能简要地说一说,平均数是用什么方法得出的?

预设:平均数是通过计算得出的。

教师:这三种统计图各有什么特点?适合在什么情况下使用呢?

预设:条形统计图便于直观了解数据的大小及不同数据的差异。折线统计图便于直观了解数据的变化趋势。扇形统计图能清楚地反映各部分与整体之间的关系。

(二)整理数据,自主探究

1.收集整理数据,制作统计图表。

教师:请同学们拿出课前已经填好的调查表(如下)。先按项目剪开,然后9个小组的组长将你们要整理的项目条收集起来,先整理分类,再用统计表进行统计。想一想,从统计表中可以得出哪些信息?

学生开始按课前分好的小组收集项目条,教师巡视并帮助有困难的小组进行数据整理。

2.求统计量和分析。

教师:经过大家的共同努力,各小组的统计表已经整理好了,请到前面来展示你们的成果。

学生1:我们第一小组整理的是全班同学的身高情况,制成的统计表是这样的。

教师:观察这张统计表,你们有什么发现?

预设:身高是1.52米的同学人数最多,身高是1.40米的人数最少。

学生2:我们第二小组整理的是全班同学的体重情况,从表中可以知道,体重是39千克的人数最多,体重是30千克的人数最少。

其余各小组分别展示统计表后,教师适时提出问题:选择一张统计表,你能得出这组数据的平均数吗?用什么数据能代表全班同学的身高、体重?

学生先独立练习,再小组讨论,教师指导小组合作学习。

教师:哪个小组来交流一下你们的学习成果?

学生3:第一组数据的平均数是1.50425。我们认为用平均数能代表全班同学的身高情况。

学生4:第二组数据的平均数是39.6。我们认为平均数可以代表全班同学的体重情况。

教师:同学们合作学习的效率非常高。老师这里还有个问题,你能很快解答吗?

如果把全班同学编号,随意抽取一名学生,该生体重在36千克及以下的可能性大?还是在39千克及以上的可能性大?

预设:在39千克及以上的可能性大。因为体重在39千克及以上的人数比体重在36千克及以下的人数更多。

教师:你能提出类似的问题让小组同学解答吗?

3.制作统计图并进行分析。

教师:这是六(1)班男、女生人数统计表。想一想,用怎样的统计图表示比较合适?

预设:用扇形统计图比较合适,因为扇形统计图能清楚地反映各部分数据和整体之间的关系(课件适时出示下图)。

教师:想一想,用怎样的统计图表示你们组的统计数据比较合适?在方格纸或空白圆中画出统计图。

小组讨论确定统计图后,学生独立练习,教师巡回指导。

交流展示:

学生5:我们小组将六(1)班同学最喜欢的运动项目做成了复式条形统计图(课件出示)。

教师:观察这个统计图,你得到了哪些信息?

预设:六(1)班同学最喜欢的运动项目中,男生喜欢足球的人数最多,女生喜欢跳绳的人数最多。

学生6:我们小组整理的是“你对自己在各年级的综合表现是否满意”的情况,选用的是折线统计图(课件出示)。

教师:从这张统计图中,你能获得怎样的信息?

预设:六(1)班同学对各年级综合表现满意情况总体呈现上升趋势。

教师追问:想一想,这说明了什么?

预设:说明随着年级的升高,同学们对自己各方面表现的评价也越来越好。

(三)练习巩固,加深理解

1.学生独立完成练习二十一第1题。

根据所要描述的情况,填写合适的统计图。

(1)描述六(2)班同学身高分组的分布情况,用___________。

(2)描述从一年级到六年级的平均身高变化情况,用___________。

(3)描述身高组别人数占全班人数的百分比情况,用___________。

指名回答,集体订正。

2.完成练习二十一第2题。

下面是某汽车公司去年汽车生产量和销售量情况。

(1)该公司去年全年的生产和销量情况如何?

(2)该公司的发展前景怎样?

(3)你还能提出哪些问题?

四、课堂总结,小议收获

教师:这节课复习了什么内容?用平均数表示一组数据时要注意什么?怎样根据实际情况恰当地选择统计图?

五、课外作业,实践应用

想一想:除了通过问卷调查收集数据外,还可以通过什么手段收集数据?请自主选择一个调查项目开展实践。

统计与概率的教案篇6

一、教学目标

1.知识与技能目标:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。

2.过程与方法目标:通过体验探索扇形统计图的特点和应用,发展学生推理能力,提升学生的抽象思维能力。

3.情感态度与价值观目标:在活动中体会数学的特点,了解数学的价值。

二、教学重难点

重点:从具体的实例中知道扇形统计图的特点和作用,可以在生活中运用扇形统计图。

难点:在活动中体会数学的特点,了解数学的价值。

三、教学过程

(一)创设情境,激趣导入

通过案例呈现扇形统计图运用的情境,导入课题。

(二)探究体验,构建新知

1.学生动手实践:分析一个扇形统计图,说明从中可以获取什么信息。

2.引导抽象概括:设置小组讨论,探讨扇形统计图的特点和应用。

3.知识拓展延伸:通过进一步讨论不同扇形统计图的信息表现方式

(三)课末总结,梳理提升

1.学生自主总结,教师启发点拨重难点。

2.同学们今天有什么收获呢?

3.扇形统计图的特点是什么呢?

四、布置作业

运用扇形统计图分析生活中的事件。

统计与概率的教案篇7

教学目标:

1、经历收集数据、整理数据、分析数据的活动,体现统计在实际生活中的应用。

2、在运用统计知识解决实际问题的过程中,发展统计观念。

教学重点和难点:发展统计观念。

教学准备:投影片。

复习过程:

一、回顾与交流

1.收集数据,统计表

师:我们班要和六(1)班建立手拉手班级,你想向手拉手的同学介绍哪些情况呢?

学生可能回答:

① 姓名、性别。

② 身高、体重。

③ 兴趣爱好。

(1)调查表

为了清楚地记录你的情况,同学们设计了一种个人情况调查表。

姓名 性别

身高/c 体重/g

最喜欢的学科 最喜欢的运动项目

最喜欢的图书 长大后最希望做的工作

最喜欢的`电视节目 特长

① 填一填.

② 用语言描述清楚还是表格记录清楚?

(2)统计表

为了帮助整理和分析全班的数据,同学们又设计了一种统计表。

你认为用统计表记录数据有什么好处?你对统计表还知道哪些知识,与同学进行交流。

2. 统计图

(1)你学过几种统计图?分别叫做什么统计图?各有什么特征?

① 条形统计图

特征:清楚表示出各科数量的多少。

② 折线统计图

特征:清楚表示数量的增减变化情况。

③扇形统计图

特征:清楚表示各种数量的占有率。

(2)教学例题

①认真观察例题中的图表。

②指出各统计图的名称。

③从图中你能得到哪些信息?

如:从扇形统计图看出,男、女生占全班人数的百分率;

从条形统计图看出,男、女生分别喜欢运动项目的人数。

统计与概率的教案7篇相关文章:

村统计员个人述职报告7篇

光与影子大班教案通用7篇

2023年健康与教育教案5篇

饮食与健康的活动方案7篇

运营的工作计划与目标7篇

与客户的总结报告7篇

失败与成功的作文500字7篇

让座与不让座的作文7篇

诚信与友善的作文7篇

读演讲与口才的心得体会精选7篇

统计与概率的教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
60614