分数想对性教案优秀8篇

时间:
Iraqis
分享
下载本文

编写教案必须以课程教学大纲的学时分配为基础,教案是教师实施教学的主要依据,以下是报喜范文网小编精心为您推荐的分数想对性教案优秀8篇,供大家参考。

分数想对性教案优秀8篇

分数想对性教案篇1

教学目标:

1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。

2、通过练习,培养学生的计算能力及初步的逻辑思维能力。

3、通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。

4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。

教学重点:确定运算顺序再进行计算。

教学难点:明确混合运算的顺序。

教具准备:多媒体课件。

教学过程:

一、旧知铺垫(课件出示)

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。

2、说出下面各题的运算顺序。

(1)428+63÷9―17×5 (2)1.8+1.5÷4―3×0.4

(3)3.2÷[(1.6+0.7)×2.5] (4)[7+(5.78—3.12)]×(41.2―39)

3、小红用长8米的彩带做一些花,每朵花用2/3米彩带,一共可以做多少朵?

二、新知探究

分数想对性教案篇2

教学目标:

要求学生在初步了解分数的基础上,对分数从感性认识上升到理性认识,理解分数的意义。

通过练习加深同学们对分数的意义的理解。

培养同学们分析问题、解决问题的能力。

教学重点:

理解单位1的含义。

教学难点:

理解单位1的含义。

教学过程:

(1)在初步了解分数的意义之后:

请用分数表示2个红的圆。(1/2,2/4)

讨论:同意哪种意见?

为什么同样的两个红圆可以用两个不同的分数表示?

那么老师用4/8表示这两个圆,你认为可以吗?为什么?

你们认为还可以用别的分数来表示吗?(6/12,8/16,12/24)

这样的分数你们能多少个?(写不完)为什么?

思考:为什么同样的两个圆可以用不同的分数来表示呢?

(平均分的份数不同,两个圆所占的份数也不同,分数就不同了)

(2)巩固练习

a、1/2 1/3 1/4 1/6 1/12 1/24

任选一个分数,并在图上用阴影部分表示出来。

b、任选一副图表示出它的5/6。

(3)课堂小结

今天发言的同学请站起来。

全班46人,发言的人数是全班人数的几分之几?

还有一些同学没发言,请发言过的.同学出题,让他们有机会发言。

教学反思:

在练习课的设计上,课本上的练习十分单调,将课外精选的一些练习安排在练习课上,取得了比较好的效果,学生对分数的意义有了一个比较完整的理解。

分数想对性教案篇3

教学目标 :

1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、理解和掌握分数的基本性质。

3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/span>

4、较好实现知识教育与思想教育的有效结合。

教学重点 :理解和掌握分数的基本性质。

教学难点 :能熟练、灵活地运用分数的基本性质。

教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。

教学过程:

一、巧设伏笔、导入新课。

1、出示课件:120÷30的商是多少?

被除数和除都扩大3倍,商是多少?

被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

2、在下面□里填上合适的数。

1÷2=(1×5)÷(2×□)

=(1÷□)÷(2÷4)

①想一想,你是根据什么填上面的数的?(生口答)

(课件:商不变的性质)

②商不变的性质是什么?(生口答)

③除法与分数之间有什么关系?

生答,师板书:被除数÷除数=被除数/除数

二、讨论探究,学习新知。

1、课件出示:1÷2= (怎么写)

①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?

让生合作探讨。

②生出示答案:1/2=2/4=4/8……

有选择填入上数。

2、引导学生证明它们相等。

①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

(课件演示)

上述演示让学生感知后,问你发现了什么?(生讨论)

②再逆向思考,观察板书和课件。

问你又发现了什么?(生讨论)

得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

3、验证、补充、强调

①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

④归纳出上述板书为“分数的基本性质”(课题)。

4、信息反馈、纠正、巩固。

①判断(出示课件)

a、分数的`分子,分母都乘上或除以相同的数,分数的大小不变。

b、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

c、3/4的分子乘上3,分母除以3,分数的大小不变。

d、10/24=10÷2/24÷2=10×3/24×3 ( )

完成后,强调重点,加以巩固。

②完成课本108页例2(学生尝试练习)

强调运用了什么性质?课件:“分数的基本性质”醒目强调。

三、实践练习,信息综合

1、练一练

①3/5=3×( )/5×( )=9/( )

②7/8=( )/48

③4÷18=( )/( )=4×5/18×( )=2/( )

2、练习二十二1—3题。

四、课堂总结、整体感知。

(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

五、发散巩固、自主选择。

想一想:(选择一道你喜欢的题做)

课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

分数想对性教案篇4

课堂教学目标:

1.通过综合练习,进一步巩固用百分数知识解决实际问题的基本思考方法,提高学生综合运用知识解决问题的能力。

2.通过探索和实践,让学生进一步体会百分数在实际生活中的广泛应用,感受百分数学习的意义和价值。

3.通过评价与反思,激励学生学好数学的信心。

教学重点:

通过探索与实践,让学生在解决稍复杂的各类百分数实际问题的过程中,能合乎逻辑地进行分析和思考,能用自己的语言描述解题思路,能合理、自觉地选择解决问题的策略。

教学准备:教师准备教学光盘及多媒体设备;课前组织学生收集父母身高和体重的数据以及作好第13题的调查活动。

教学过程:

一、谈话揭题。

上节课,我们将第一单元的数学知识进行了整理。运用我们所学的这些有关百分数的知识还可以解决生活中很多稍复杂的实际问题。(板书课题)

二、练习与应用

1.完成第7题。

(1)独立解答。

(2)交流算法,重点分析数量关系。

2.完成第8题。

(1)理解题意,适当解释“合金”的意思。

明确:一块黄铜的千克数由两部分组成,一是铜的,二是锌的千克数。

(2)学生独立解答后交流解题思路,学生可以有不同的解法。

3.完成第9题,学生解答后交流思考过程,教师及时评价。

4.完成第10题。

(1)理解题意,问:两个百分数分别是以什么为单位“1”?数量间有怎样的相等关系?要算这个月的城市维护建设税,需先求出什么?

(2)学生解答。

5.完成11题。

(1)读题,重点理解“携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票”这句话的意思。

可先让学生独立思考,再讨论交流。

明确两点:

一、首先算出超过20千克的那部分重量;

二、行李票的价格=飞机票原价x1.5%。

(2)学生解答。

三、探索与实践

1.完成12题。

(1)同桌间交流课前收集爸爸妈妈及自己的体重和身高。

(2)根据公式算一算各自的标准体重。

(3)根据公式算算实际体重是否属于正常体重。

2.完成13题。

(1)根据课前调查计算。

(2)组织学生交流,说说通过计算谈谈自己的想法。

3.思考题。

引导分析:利用倒过来推想的策略

先算出这件商品打折前的售价是:104x80%=130元

再算出商品的成本价:x+30%x=130,求出x=104元

作出判断。

四、评价与反思

通过这一单元的学习,请你对自己的学习情况做一评价与反思。

学生就教材提供的内容进行评价,教师及时了解学生评价情况。

分数想对性教案篇5

学习内容:

课本第76页例2及“做一做”第2题。

学习目标:

1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。

2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。

学习重难点:

我能应用分数的基本性质解决简单的实际问题。

学习过程:

一、导入新课

二、合作探究、检查独学

1.自学教科书76页例2:把和化成分母是12而大小不变的分数。

(1)思考:①要把2/3化成分母是12的分数,我们就要把分母()乘()才能得到12;分数的`基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该()。最后分子分母都乘了个(),就把2/3化成了分母是12的分数()。

②要把10/24化成分母是12的分数,我们就要把分母()除以()才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该()。最后分子分母都除以了个(),就把10/24化成了分母是12的分数()。

(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。

2.小组代表展示、汇报

3.总结升华

4.我能行:完成课本第76页“做一做”第2题。

分数想对性教案篇6

课题一:(一)

教学要求 ①使学生了解分数的产生,理解,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。②培养学生抽象概括能力。③感受知识来源于实践,又服务于实践的观点。

教学重点 理解。

教学用具 教材第84~85页有关的投影片、线段图等。

教学过程

一、创设情境

1.提问:①把6个苹果平均分给2个小朋友,每人分得几个?(3个)②把一个苹果平均分给2个小朋友,每人分得多少?(每人分得这个苹果的 )。

2.指定一名学生用1米长的直尺量一量黑板的长度是多少米。(比3米长,比4米短)。

3.揭示课题

在实际生产和生活中,人们在测量和计算时,往往得不到整数的结果,在这种情况下就产生了分数。究竟什么叫分数呢?这节课我们就来学习。

二、探索研究

1.学生回忆:我们已经学过,把一个物体或一个计算量单位平均分成若干份,表示这样的一份或几份的数叫做分数。例如:

(1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?

(2)出示正方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的3份呢?( 、 )

(3)出示线段图提问:把一条线段平均分成5份,这样的1份是这条线段的几分之几?这样的4份呢?

如果把1分米的长度平均分成10份,这样的1份是它的几分之几?7份呢? 表示什么?

2、进一步认识单位1。

以上都是一个物体、一个计量单位看作一个整体,我们也可以把许多物体看作一个整体,如4个苹果、一批玩具、一个班的学生等。例如:

(1)出示课本第86页的苹果图。提问:把4个苹果平均分成4份,一个苹果是这个整体的几分之几?

(2)出示熊猫图。提问:把6只熊猫玩具看作一个整体,平均分成3份,一份是这个整体的几分之几? 表示什么?

(3)练习:说出下图中涂色的部分各占整体的几分之几。

● ●

●○○○○○ ● ●

●○○○○○ ● ●

● ○

● ○

● ○

3.揭示。

(1)观察以上教学过程 所形成的板书。

一个物体

计量单位 单位1

一些物体

告诉学生:像这样表示一个物体、一个计量单位或是许多物体组成的一个整体,都可以用自然数来表示,通常我们把它叫做单位1。(板书:单位1)

(2)反馈。①在以上各图中,分别是把什么看作单位1?② 、 、 各表示什么意义?③议一议:什么叫做分数?

(3)概括并板书。把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

4.练习。练习十八第1、2、3题。

5.教学分数各部分名称、分数单位。分数的读、写法。

(1)教师任意写出几个分数,让学生说出分数各部分的名称。

(2)阅读课本第85页最后一段并思考:一个分数中的分母、分子各表示什么?

(3)认识分数单位,初步了解分数单位的特点。

练习:① 的分数单位是,它有个 。

② 的分数单位是,它有个 。

③个 是。

④ 是个 。

(4)想一想:读、写分数的方法是怎样的?

读作 ,表示 个 。

读作 ,表示有 个 。

三、课堂实践

1. 表示把平均分成份,表示这样的份的数。

2. 读作,分数单位是,再添上个这样的单位是整数1。

四、课堂小结

1、什么叫做分数?如何理解单位1?

2、什么是分数单位?分数单位有什么特点?

五、课堂作业

练习十八第5、6题。

课题二:(二)

教学要求 ①使学生进一步理解及分数单位,并能正确地应用。学会用直线上的点表示分数。能联系,正确解答求一个数是另一个数的几分之几。②进一步培养学生的抽象概括能力。③渗透数形结合思想。

教学重点 理解。

教学过程

一、 创设情境

1.用分数表示图中阴影部分。

▲▲ ▲▲

△△ ▲▲

2.口答:什么是分数?如何理解单位1?

3.填空。

是个 。 的分数单位是

7个 是。 的分数单位是

二、揭示课题

出示学习内容及学习目标。板书课题:。

三、探索研究

1.认识用直线上的点表示分数。

分数也是一个数,也可以用直线(数轴)上的点来表示。

(1)认识用直线上的点表示分数的方法。

①画一条水平直线,在直线上画出等长的距离表示0、1、2。

②根据分母来分线段,如果分母是4,就把单位1平均分成4份。如: 、 :

0 1 2

(2)提问:如果要在直线上表示 ,该怎样画?启发点拨。

①先画什么?再画什么?

②应把0~1这一段平均分成几份?如果分母是8呢?分母是10呢?

③ 应用直线上的'哪一个点来表示?

(3)如果要在这条直线上表示分母是10的分数,该怎么办?

这条直线上0~1之间的第七个点表示的分数是多少?

2.练习。

(1)教材第87页下面做一做的第2题。

(2)用直线上的点表示 、 、 、 。

3.教学例1。

(1)指名读题,帮助学生理解题意。

(2)出示讨论题,同桌讨论。

①这题中把什么看作单位1?

②1人占这个整体的几分之几?

③5人占这个整体的几分之几?

(3)汇报讨论结果,板书答语。

(4)小结分析思路。口答这类求一个数是另一个数的几分之几的题目时,一般要根据先找单位1是几,就是分母平均分成几份,其中1份是分数单位,再看有几个这样的分数单位,就是几分之几。

4、练习。教材第88页的做一做。

四、课堂实践

1.教材第87页的做一做。

2.用直线上的点表示 下面的分数: 、 、 、 、 。

3.食堂有一批面粉,吃了45袋,还剩28袋,吃了的和剩下的各占这批面粉的几分之几?

五、课堂小结

1.用直线上的点表示分数的方法是怎样的?

2.口答:求一个数是另一个数的几分之几的依据是什么?解题时应该怎样思考?

六、课堂作业

练习十八第4、7、8题。

课题三:分数与除法的关系

教学要求 ①使学生正确理解和掌握分数与除法的关系,会用分数表示两个数相除的商。②培养学生的逻辑推理能力。③渗透辩证思想,激发学生学习兴趣。

教学重点 理解和掌握分数与除法的关系。

教学用具 投影片(教材第89页的饼图)

教学过程

一、创设情境

1.填空。

(1) 表示。

(2) 的分数单位是,它有个这样的分数单位。

2.计算。(1)58 (2)49

二、揭示课题

我们知道,在计算整数除法时经常遇到除不尽或得不到整数商,有了分数,就可以解决这个问题。这节课我们就来学习怎样用分数表示除法的商,认识分数与除法的关系。(板书课题)

三、探索研究

1.教学例2

(1)读题后,指导学生根据整数除法的意义列出算式。板书:

13=

(2)讨论:1 除以3结果是多少?你是怎样想的?

(3)教师画出线段示意图,帮助学生理解。

1米

通过讨论使学生明白:把1米平均分成3份,其中一份应是1米的 ,就是 米。

(3)写出答语。

2.教学例3。

(1)读题后,引导学生列出算式:34。

(2)指导学生动手操作:拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(3)请几名学生口述分法及每份分得的结果,教师总结几种不同的分法。

(4)归纳。从上面的操作可以知道,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块拼合起来就是1个饼的 ,即 块。因此,

34=(块)。

由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样一份的数。

3、认识分数与除法的关系。

(1)引导学生观察13=、34=这两道算式,想一想:

①两个自然数相除,在不能得到整数商的情况下,还可以用什么数表示?

②用分数表示商时,除式里的被除数、除数分别是分数里的什么?

③分数与除法的关系是怎样的?

(2)教师总结,学生发言,归纳出以下三点:

①分数可以表示整数除法的商;

②在表示整数除法的商时,要用除数作分母、被除数作分子;

③除法里的被除数相当于分数里的分子,除数相当于分数里的分母。(强调相当于一词)

分数与除法的关系可以表示成下面的形式:

板书:被除数除数=

(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可发怎样表示?

板书:ab=(b0)

(4)想一想:这里的b能为0吗?为什么?

启发学生说出在整数除法里,除数不能是零,在分数中分母也不能是零,所以这里b0。

(5)再想一想:分数与除法有区别吗?区别在哪里?

着重强调:分数是一种数,但也可以看作两个数相除。除法是一种运算。

4、学生阅读教材,质疑问难。

四、课堂实践

教材第91页中间的做一做。

五、课堂小结。

引导学生回顾全课,说说学到了什么,自我总结,教师作补充。

六、课堂作业 。练习十九第1~3题。

课题四:分数与除法关系的应用

教学要求 ①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道事物间在一定的条件下是可以相互转化的观点。

教学重点 求一个数是另一个数的几分之几的应用题。。

教学过程

一、创设情境

1.口答:30分米=米 180分=时

练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

2.说一说:分数与除法的关系?

3.用分数表示下面各算式的商。

(1)79(2)47(3)815(4)5吨8吨

二、揭示课题

这节课学习分数与除法关系的应用。(板书课题)

三、探索研究

1.出示例4。

(1)出示例4并审题。

(2)提问:根据把低级单位的名数改写成高级单位名数的方法,这两题该怎样计算?当两数相除得不到整数商时,商应该如何表示?

让全体学生尝试练习。

(3)集体订正。订正时让学生说说是怎样想的?

(4)比较例4与复习题第1题有什么不同的地方,有什么相同的地方?

重点说明当两数相除得不到整数商时,其结果可以用分数表示。

2.练习教材第91页下面的做一做。

3.教学例5 。

(1)出示教材第92页复习题,让学生独立列式解答。

集体订正时启发学生分析:这道题把谁与谁比,求鸡的只数是鸭的几倍,把什么看作标准,用什么方法计算?算式怎样列?

板书:3010=3

答:鸡的只数是鸭的3倍。

(2)出示例5并读题,鼓励学生从不同角度思考,并组织学生讨论解题方法。

讨论后师生共同评价,主要有两种方法:

①从分数意义入手。求养鹅的只数是鸭的几分之几,也就是求7只是10只的几分之几。把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的 。

②从倍数关系入手。求养鹅的只数是鸭的几分之几,是以鸭的只数作标准,可以用除法计算,列式为:710=。

(3)比较复习题与例5异同点。

通过比较使学生看到:求一个数是另一个数的几分之几,和求一个数是另一个数的几倍,都用除法计算,都拿作标准的数作除数,得出的商都表示两个数的关系,都不能注单位名称。所不同的是,前面的题是求一个数是另一个数的几倍,得到的商是大于1的数,后面的题是求一个数是另一个数的几分之几,得到的商是小于1的数。

4、练习。教材第92页做一做第1、2题。

四、课堂实践

1.在括号里填上适当的分数。

8厘米=米 146千克=吨 23时=日

41平方分米=平方米 67平方米=公顷 37立方厘米=立方分米

2.五(1)班有女生25人,比男生多4人。

(1)男生占全班人数的几分之几?

(2)女生占全班人数的几分之几?

(3)男生人数是女生人数的几分之几?

五、课堂小结

1、把低级单位名数改写成高级单位名数当得不到整数商时,该如何表示?

2、求一个数是另一个数的几分之几应用题的解答方法是什么?

六、课堂作业

练习十九第4~7题。

七、思考题。

练习十九第8题及思考题。

课题五:分数大小的比较

教学要求 ①使学生掌握分母或分子相同的几个分数大小比较的方法,并能正确比较分数的大小。②应用观察图示边比较边归纳的方法,渗透化归、分类等思想。③培养学生口述算理及归纳概括能力。

教学重点 掌握比较分数大小的方法。

教学用具 投影片(教材例6、例7直观图)

教学过程

一、创设情境

1.教材第93页复习题,请一名学生口答。

2.看图写分数,并比较分数的大小。

0 1

二、揭示课题

以前我们通过对图形的观察,初步学会了最简单的两个分数大小的比较,这节课就来进一步探究分数大小的比较方法。(板书课题)

三、探索研究

1.同分母分数的大小比较。

(1)比较 和 的大小。

出示例6左图,引导学生观察后提问: 和 相比,哪个分数大,哪个分数小?(板书: > )

如果没有直观图,该怎样比较 与 的大小呢?

因为 和 的分母是相同的,它们的分数单位都是 , 是2个 , 是1个 ,2个 比1个 多,所以 > 。

(2)用类似的方法引导学生比较 和 的大小。

(3)观察例6这两组分数,找出它们有什么共同特点?分母相同的两个分数,该怎样比较它们的大小?(请一名学生口答)

板书:分母相同的两个分数,分子大的分数比较大。

2.练习:教材第93页做一做。

3.同分子分数的大小比较。

(1)比较 和 的大小。

①出示直观图,使学生从图上看到:平均分的份数越多,每一份反而越小,所以 大于 。

② 和 的分子相同,表示所取的份数一样多,它们的大小是由分数单位决定的。分母小的分数表示分的份数少,每一份就大,也就是分数单位大;分母大的分数表示分的份数多,每一份就小,也就是分数单位小。所以 大于 。

(2)比较 和 的大小。

用类似的方法进行比较并得出结论: < 。

(3)想一想:上面每组中的两个分数有什么不同的地方?分子相同的两个分数怎样比较大小?

板书:分子相同的两个分数,分母小的分数比较大。

4、练习:教材第95页的做一做。

四、课堂小结

比较两个分数的大小,首先要看清是分母相同还是分子相同。如果分母相同,关键看分子,分子大的分数比较大;如果分子相同,关键看分母,分母小的分数比较大。

五、课堂实践

1.练习二十第1题。

2.练习二十第3题。

六、课堂作业

练习二十第2、4题。

七、思考练习

在括号里填上合适的数

< < < > >

分数想对性教案篇7

一、说教材

教材地位:

分数的意义和性质这部分内容是在学生对分数已经有了初步的认识、掌握了约数和倍数、最大公约数、最小公倍数等知识的基础上进行教学的。关于分数的意义,学生在四年级时,已借助操作,直观初步认识了分数的基础上教学的。要通过教学使学生从感性上升到理性认识。根据出分数的意义,理解单位“1”和分数单位,这是学生系统学习分数的开始,是本单元的重点,它是解答分数四则运算和应用题的重要基础。

教学目标:

(1)通过直观教学和操作等活动引导学生经历探究分数意义的过程,理解单位“1”的含义,初步掌握分数的概念

(2)在活动中培养学生分析、综合、比较、抽象、根据等初步的逻辑思维能力

(3)体验学习数学的成功和愉悦,培养学生学习数学的积极情感

教学重点:

分数意义的归纳与单位“1”的理解

教学难点:

把多个物体组成的一个整体看作单位“1”

教学准备:

每小组一张圆形纸片,一条一分米长的线段,6个正方体,8个苹果图

二、 说教法学法

1、教法

“分数的意义”一课,是小学数学概念教学比较抽象,学生较难理解的特点,为能使学生较好地理解掌握这一内容,采用启发式教学。教学中充分利用直观演示,遵循概念教学的原则,启发引导学生由感性认识到理解认识,由具体到抽象,充分调动学生学习的积极性、主动性、发展学生的思维能力。

2、学法

古人云:“授人一鱼,仅供一饭之需,授人一渔,则终身受用无穷”。现代教学认为教学的任务不仅是传授知识,而重要的是教给学生获取知识的方法。因此,在教学中特别注重加强对学生学法指导。

(1) 通过教学使学生掌握从具体直观到抽象概括的思维方法,为了使学生建立清晰的分数意义概念,为学生提供了丰富的感性材料。

(2) 引导多种感官参与学习,培养学生良好的观察能力、分析能力。

三、 说教学程序

(一)谈话导入,由旧引新

首先,通过激趣谈话问学生:把蛋糕分给4个学生,怎样分大家才满意?根据学生的已有经验,很快回答是14,然后出示一个不平均分的蛋糕图,问:这样的一份能用14表示吗?两幅图进行比较,得出:分数是建立在平均分的基础上。

(二)探究新知,建构概念分4个环节来探究

1、独立动手做分数

如果用图表示14 ,100个人会有100种表示方法,老师为你们每组提供了一些材料,你们能分别表示出它的14 吗?

本环节充分利用“分数初步认识”中学到的知识,通过对具体、形象的实物图片的.观察,学生亲自动手操作,参与获得知识的过程。

2、动手操作,感知意义

学生分五人一组,每组有一套学具,然后让学生选一种材料自己动手创造分数,并提出学习要求。学生操作,汇报交流展示学生把不同物体看做一个整体所创造的分数。

本环节在大量感性认识基础上,充分调动学生眼、口、脑、手等多种感官参与认识活动。

3、观察比较、抽象单位“1”

思考:你们能给平均分的对象分分类吗?

引导生归纳:一个物体,一个计量单位,一个整体都中可以用自然数“1”来表示,通常叫做单位“1”。

讨论:单位“1”为什么要加引号?它同自然数1的意义一样吗?

你能举例说说我们生活中哪些可以看作单位“1”。

本环节,通过小组讨论比较异同,全班交流,全面具体地感知单位“1”,这是理解分数意义的关键。

4、抽象概括、归纳分数的意义

(1) 学生尝试自己归纳分数的意义。

(2) 理解“若干”一词的意义。

(3) 结合学生发言,板书分数的意义。

本环节引导学生由感性认识到理性认识,由具体到抽象,逐步深化,理解分数的意义。

三、分层练习,巩固深化。

为巩固所学新知识,设计了基础练习和拓展练习,贯穿“讲练结合,练为主线”的教学原则,通过巩固学生对新知识理解掌握,发展学生的思维能力。

四、引导反思,全课小结

今天这节课你有哪些收获?对自己的学习满意吗?请说说自己的感受和体验。

总之本课教学设计,根据学生认知规律,由直观形象思维向抽象思维过渡特点进行教学,旨在使学生在初步认识分数的基础上,建立明确分数意义概念。教学重点放在把一个整体看作单位“1”上,让学生通过大量实例感知分数意义的基本内涵,培养学生归纳概括能力。在教学中让学生动手、动口、动脑,让学生积极主动地参与学习,使学生对分数意义有较深刻认识。

分数想对性教案篇8

教学内容:教科书第82页练习十四第5—9题。

教学目标:

1、通过练习,进一步理解并掌握异分母分数加、减法计算方法,能正确计算简单的异分母分数加、减法,并能用来解决一些简单的实际问题。

2、通过估算练习,进一步培养学生的数感,进一步感受数学与生活的联系。

3、在运用数学知识解决问题的过程中,进一步培养学生收集信息、选择信息去解决问题的能力。

练习重点:

通过练习,提高学生计算异分母分数加、减法的能力。

教学准备:

教学光盘或自制投影片

教学过程:

一、情境导入、回顾再现

谈话:上节课我们学习了什么?

请学生交流:异分母分数加、减法的计算方法是怎样的?

揭示课题:这节课,我们继续进行异分母分数加、减法的练习。(板书课题)

(设计意图:开门见山切入主题,直接引起学生对上一节课的回忆。)

二、分层练习、强化提高

1、口算:

2、解方程

x+=—x=

x—=x+=

3、出示练习十四第5题。

(1)学生先观察每组的两个算式,说说自己的想法,可以对计算结果进行分析和合理猜测。(鼓励学生进行有根据地猜测和推想)

(2)学生每人选做两组题,计算后思考其中隐藏的规律。

(3)请学生先和同桌进行交流,再请几位学生来说说自己的想法,如:每组题中的两个分母的最大公因数是1,分子也是1,把这样的两个分数相加、减,得数的分母就是原来两个分母的乘积,而分子就是原来两个分母的和或差。(教师及时学生交流情况)

(设计意图:通过不同类型的习题练习,巩固异分母分数加减法的基本知识,形成基本技能)

三、自主检测、完善

1、出示练习十四第6题。

(1)理解题目意思后,学生先独立思考进行解答。

(2)组织学生进行交流,说说自己是怎样思考的。

2、出示练习十四第7题。

(1)先让学生进行估算,看看哪几题的结果接近1/2,再计算。

(2)组织学生进行交流,教师及时。

3、解决问题。

(1)出示练习十四第8题。

学生认真看图后独立解答,然后进行交流。

(2)出示练习十四第9题。

学生认真看图,收集从图中获取的信息,然后独立思考并解答三个问题。

组织学生交流,教师及时了解学生解题情况,发现问题及时讲评。

4、补充练习

1、食堂运来一批大米,第一周吃了总数的4/15,第二周吃了总数的7/60。这两周一共吃了总数的几分之几?

2、张大伯收了1/2吨西瓜,第一天卖出总数的1/5,还剩总数的几分之几?

3、一个最简分数,分子减去1,约分后是5/6,原分数是多少?

4、一个分数,分子、分母之和是29,如果分母增加13,约分后得1/6,原分数是多少?

学生独立完成后进行交流,同桌之间可互相解答情况。

(设计意图:通过测试的形式对学生进行分数加减法知识的检验,找出存在的问题,订正错误,并体验学习的`成功喜悦。)

四、归纳课外延伸

通过今天的练习你有哪些收获?练习过程中还有什么问题吗?

教后反思:

本节课是练习课,学生能熟练地运用异分母分数加、减法的计算法则,能选择自己喜欢的方法进行计算。还能运用已学的运算定律、性质等进行简便计算,效果比较好。但在拓展练习中,很多学生受思维定势,打不开思路,经提示和部分学生的引路,知道了很多的思考方法。另外在练习过程中,通过不同类型的习题练习,巩固异分母分数加减法的基本知识,形成基本技能。通过测试的形式对学生进行分数加减法知识的检验,找出存在的问题,订正错误,并体验学习的成功喜悦。

分数想对性教案优秀8篇相关文章:

一我想对你说作文600字5篇

一我想对你说作文600字初中作文5篇

老师我想对你说450作文优质5篇

老师我想对你说450作文6篇

作文老师我想对你说400字7篇

2023我想对你说作文最新6篇

2023我想对你说作文精选6篇

2023我想对你说作文优质7篇

我想对你说作文1000字6篇

毕业想对老师说作文5篇

分数想对性教案优秀8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
53816