圆柱的教案精选6篇

时间:
Indulgence
分享
下载本文

教案的编写需要注重教学过程的灵活性和适应性,以便根据实际情况进行调整和改进,每一位教师都应该掌握写教案的技巧和方法,以下是报喜范文网小编精心为您推荐的圆柱的教案精选6篇,供大家参考。

圆柱的教案精选6篇

圆柱的教案篇1

教学目标

1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

2、使学生在数学学习活动中获得成功的体验,建立自信心。

教学重点

表面积的计算。

教学难点

侧面积的'含义与计算方法。

教学关键利用教具,弄清侧面积与圆的关系。

教具准备圆柱侧面展开教具。

教学方法操作法。

教学过程

旧知铺垫

1、口算。

3.1434100.5670.820

2、长方体表面积。12㎝

(1)长方体的表面积指的是什么?8㎝

(2)怎样计算长方体的表面积?20㎝

探索新知

1、揭示并板书课题。

2、教学例3。

(1)你们知道圆柱体的表面积指的是什么吗?

(说一说、摸一摸)

(2)你们想应该怎样计算圆柱体的表面积?

(学生说明、教师演示)

板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

(3)圆柱体的底面积和侧面积会计算吗?

(学生说明、教师演示)

板书推导过程。

3、尝试练习。

(1)求侧面积。

a、c=2.5dm,h=0.6dm。

b、d=8cm,h=12cm。

(2)求表面积。

a、s底=40c㎡,s侧=25c㎡。

b、r=2dm,h=5dm。

4、课堂小结。

巩固练习完成练习2的第5、6题。

布置作业完成练习2的第7、8题。

圆柱的教案篇2

第二课时

圆柱和圆锥

教学目标:

1、使学生学会通过假设和调整来解决问题,进一步的提升思维水平。

2、在运用假设和调整来解决问题的过程中,体会假设与调整的多样性。

3、在解决问题的过程中,获得解决问题的成功经验,提高学好数学的信心。

重点难点:

学会假设和调整的策略来解决问题,并体会假设与调整的多样性。

教学过程:

一、谈话导入

上节课我们学习了运用已学的多种策略来解决问题,通过对条件的进一步分析和转化,使一个问题多种思维、多种解法。今天我们继续来学习解决问题的.策略。(板书课题:假设的策略)

二、探究新知

1、教学例2(课件出示例2)

全班42人去公园划船,租10只船正好坐满。每只大船坐5人,每只小船坐3人。租的大船、小船各有多少只?

提问:解决这个问题,你准备选择什么策略?

学生小组讨论。

画图法。

先画10只大船坐50人,再去掉多的8人。

列举法。

从大船有9只、小船有1只开始,有序列举。并填写右表。

(1) 列表假设。

假设大船和小船同样多,那么我们要如何调整算出大船和小船各有多少只?

① 出示表格。

②借助表格调整。

第一步:假设租5只大船和5只小船,就会比42人少2人。

第二步:还少2人,也就是这2人还没有上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整?

先想一想,再在小组里交流想法,然后在表中填一填。

第三步:集体交流,得出方法

引导思考:少了2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多坐2人,22=1(条),所以调整为小船4条,大船6条。

② 检验结果。学生口答检验方法。

三、巩固练习

1、完成第29页练一练。

(1)引导学生先用第一种方法,根据要求提示动手操作,独立完成。

(2)用列表假设的方法再进行思考练习。

学生交流,并汇报想法。

2、完成练习五第4题。

根据题中所给的假设学生自主调整,并汇报调整想法。

四、课堂小结

通过本节课的学习,我们知道了哪些解决问题的策略?你有哪些收获?

五、课堂作业:练习五第5题。

圆柱的教案篇3

教学目标:

1、知识技能

结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法

让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观

通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程

设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:

1、合作探究学习为主要的学习方式。

2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。

3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。

教具准备:

圆柱的体积公式演示课件水槽水体积不同的圆柱体直尺细绳计算器。

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的`方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱c放入水中,验证圆柱c的体积。

方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh(设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

(设计意图:使学生注意解题格式,注意体积的单位为三次方)

2、巩固反馈

填表

底面积(㎡)高(m)圆柱体积(m3)

63

0.58

82

(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?

(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)

5、拓展练习

(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,a是用4分米做底高6分米,b是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)

四、全课小结:

谈谈这节课你有哪些收获。

圆柱的教案篇4

设计理念

本节课以学生的发展为本,着眼于培养学生的空间观念,通过创设教学活动,让学生在独立思考、合作探究、质疑内化的过程中认识圆柱的特征,自主完成对圆柱知识的建构。让学生在自主活动中学会观察、学会发现、学会思考,培养学生思维的灵活性和深刻性,增强学好数学的自信心。

教材学情分析:

圆柱的认识是小学阶段学习几何知识的最后一部分内容,是建立在学生初步认识了立体图形,掌握了长方体、正方体以及圆的相关基础知识之后进行教学的。虽然圆柱与已经学过的长方体、正方体都属于立体图形,但长方体、正方体是由几个平面图形围成的几何体,而圆柱则是由曲面围成的几何形体,这在图形的认识上又深入了一步,是学生空间观念的进一步发展。根据教育生态理论,教学时,从学生的生活实际引入,通过观察比较、动手操作、类比迁移、合作交流等原生态的教学手段,使学生自主去感受,去发现、不断提高课堂生态水平。

教学目标:

1、认识并掌握圆柱的特征,掌握圆柱侧面积的计算方法。

2、在不断的观察与操作、猜想与验证、合作与交流中提高学生的观察能力、动手实践能力,培养空间观念,构建生态课堂。

3、在师生互动中不断增强合作的意识,体验成功的乐趣,提高学习的兴趣,构建和谐课堂。

教学重点难点:

1、在活动中发现圆柱的特征和侧面积的计算方法,正确计算圆柱的侧面积,形成空间观念是本课的重点。

2、理解曲面和通过化曲为直的方法推导侧面积的计算方法是本课的难点。

教学准备

学具

教学过程

一、引入新课:

1、出示实物图,请同学们看屏幕,这些都是我们生活中常见的物体,说一说下面物体的面都有什么特点?

2、在这些形体中,哪些我们已经认识,并且知道它们的特征了?

3、今天我们就先来认识圆柱体,简称圆柱(板书课题)。突出两个圆柱图。

4、说一说,你见过哪些物体是圆柱形的?

?设计意图:生活的是生态的。首先通过展示学生生活中常见的物体,创设有利于学生学习的生态情境,在分类中自然地引入课题,然后举例并从实物中抽象出圆柱的几何图形,使学生初步感受圆柱的特征,最后通过对实物的辨析,强化对圆柱体的认识,使课堂自然、真实、生动。】

二、教学圆柱的特征:

1、观察这些圆柱,想一想,圆柱有几个面?它的面有什么特征?

学生讨论汇报。

师:除了上下两个圆面之外,圆柱还有其他的面吗?请摸一摸圆柱上下两个面,再摸一摸圆柱周围的面,它们有什么不同?

教师:圆柱上下两个面是平面,周围的这个面是弯曲的面,叫曲面。

②、那么,圆柱一共有几个面?教师在黑板上贴出圆柱平面图

教师:圆柱上下2个平面叫圆柱的底面,圆柱的底面是2个什么形?(板)

圆柱周围的这个曲面叫圆柱的侧面,圆柱的侧面是一个曲面(板)。

请同学们看平面图,圆柱的2个底面是圆形,根据美术上的透视原理应画成椭圆,其中看不见的部分要画成虚线。

③请同学们继续观察圆柱,你还有什么发现?

(如果学生说不出,教师:它的2个底面怎样?)圆柱的底面是不是相等呢?有没有方法验证呢?演示。

?设计意图:让学生学会数学的思考,是数学课程的重要目标之一。积极有效地思考,依赖于富有挑战性的问题和能够解决问题的学习生态资源。学生发现圆柱两个底面相等只是源于对圆柱的生活感受,而当学生利用老师提供的学具,采用不同的方法验证了自己的发现时,就会产生一种积极的,兴奋的行为状态,就更容易参与到下面的问题解决中去。】

2、我们发现了圆柱的相同点,那么点击出示问题,它们有什么不同点呢?

生:它们有粗有细,有长有短。

师:圆柱的粗细由什么决定?底面越大圆柱就越粗,底面越小圆柱就越细。

师:圆柱的高矮由什么决定?圆柱的高是从哪儿到哪儿?从上底面到下底面的都是高吗?高要怎样?和什么垂直呢?

师:和两个底面垂直的线段长度是2个底面之间的距离。圆柱2个底面之间的距离叫做圆柱的高。(在黑板的图上标明高)

师:如果老师把圆柱沿底面直径切开,你能找出一条高吗?(师生演示)老师斜着划一下,这个是圆柱的高吗?

想一想,圆柱有多少条高?它们的长度怎样?

?设计意图:圆柱高的认识是学生认识中的难点。在教学中教师突破了以往只教学圆柱侧面高的教学定势,从内外两方面帮助学生认识高、画高,培养了学生的空间观念。】

3、小结,现在你头脑中圆柱的形象是什么样的?

三、教学圆柱的侧面积:

1、一个长方形沿一条直线旋转,会形成什么图形呢?

圆柱在木板上滚过的轨迹是什么形状?

我们沿圆柱的一条高把侧面剪开,压平,会得到了一个什么图形呢?这个长方形的面积如何求?(板书:面积=长×宽)。

那么,点击出示讨论题,这个长方形的面积、长、宽分别与圆柱的什么有关?请在小组中讨论。学生汇报,教师板书。

长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高

教师:你们同意他的说法么?我们一起来验证一下。师生一道演示、板书。

教师:谁能完整地说一说这个转化过程。

要想计算圆柱的侧面积,应该知道什么条件?

?设计意图:侧面积计算方法的探究是本节课的重点和难点。教师通过化曲为直,帮助学生发现圆柱的侧面积】

2、点击、;你能把这张纸做成什么样?

四、全课总结:

今天我们学习了什么内容?你认识了圆柱的哪些特点?你还学会了什么呢?我们是怎样指导出圆柱侧面积的计算方法的?

教师:圆柱的侧面是一个曲面,直接计算侧面积比较困难,我们把它沿高剪开、拉平,转化成我们以前学过的长方形,就能很容易地求出圆柱的侧面积。化曲为直的方法不仅可以解决数学问题,也可以帮助我们解决生活中的问题。

五、巩固练习:

教师:下面我来考一考大家

1、在生活中,圆柱的高会有不同的称呼,你知道吗?

2、下面哪些物体是圆柱?

3、判断对错。

4、为这个易拉罐设计一个包装纸。

圆柱的教案篇5

教学目标:

1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

教学重点:

理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

教学准点:

掌握圆柱体积公式的推导过程。

教学准备:

圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

教学过程:

一、情境激趣导入新课

1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)

二、自主探究, 学习新知

(一)设疑

1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)

师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式

(二)猜想

1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

(三)验证

1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)

2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)

3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

5、通过上面的观察小组讨论:

(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?

(4) 你认为圆柱的体积可以怎样计算?

(生汇报交流,师根据学生讲述适时板书。)

小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。

6、同桌相互说说圆柱体积的推导过程。

7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)

8、求圆柱体积要具备什么条件?

9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)

小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)

11、练一练:列式计算求下列各圆柱体的体积。

(1)底面半径2cm,高5cm。

(2)底面直径6dm,高1m。

(3)底面周长6.28m,高4m。

三、练习巩固拓展提升

1、判断正误:

(1)等底等高的圆柱体和长方体体积相等。………………()

(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()

(3)圆柱的底面积越大,它的体积就越大。............( )

(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( )

2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?

3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?

四、全课总结自我评价

通过这节课的学习你有什么感受和收获?

教学反思:

圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的`面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

从本节课教学目标的达成来看,较好地体现了以下几方面:

一、创设生活情境,体现数学生活化。

?新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。

二、引导学生经历知识探究的全过程。

动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。

三、注重学法指导和数学思想方法的渗透。

“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

圆柱的教案篇6

教学内容:

p19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

渗透转化思想,培养学生的自主探索意识。

教学重点:

掌握圆柱体积的计算公式。

教学难点:

圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形。

圆柱的教案精选6篇相关文章:

我设计的船教案精选6篇

防溺水安全教育的教案精选6篇

四年级语文上册的教案精选6篇

6—9的乘法口诀教案精选8篇

8和9的组成教案精选6篇

数学6~10数的认识教案精选7篇

有关龙的教案精选6篇

中班关于吃的教案精选6篇

数字6的教案大班教案7篇

绘画伞的教案精选6篇

圆柱的教案精选6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
118107