编写清晰的教案可以帮助学生更好地理解和消化教学内容,教案的编写能够帮助教师更好地安排学生的学习任务和作业,以下是报喜范文网小编精心为您推荐的初中数学教案模板5篇,供大家参考。
初中数学教案模板篇1
[教学目标]
1、体会并了解反比例函数的图象的意义
2、能列表、描点、连线法画出反比例函数的图象
3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质
[教学重点和难点]
本节教学的重点是反比例函数的图象及图象的性质
由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点
[教学过程]
1、情境创设
可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?
2、探索活动
探索活动1反比例函数y?
由于反比例函数y?
要分几个层次来探求:
(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);
(2)方法与步骤——利用描点作图;
列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。
描点:依据什么(数据、方法)找点?
连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。
探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x
可以引导学生采用多种方式进行自主探索活动:
2的图象的方式与步骤进行自主探索其图象;x
222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.__
22探索活动3反比例函数y??与y?的图象有什么共同特征?__(1)可以用画反比例函数y?
引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?
k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x
初中数学教案模板篇2
课 题
§2.2.3 配方法(三)教学目标(一)教学知识点
1.利用方程解决实际问题. 2.训练用配方法解题的技能.(二)能力训练要求
1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.
2.能根据具体问题的实际意义检验结果的合理性. 3.进一步训练利用配方法解题的技能.
通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性. 教学重点
利用方程解决实际问题 教学难点
对于开放性问题的解决,即如何设计方案 教学方法 分组讨论法 教具准备
投影片二张 第一张:练习(记作投影片§2.2.3 a)第二张:实际问题(记作投影片§2.2.3 b)教学过程
Ⅰ.巧设情景问题,引入新课
[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 a)用配方法解下列一元二次方程:(1)x2+6x+8=0;(2)x2-8x+15=0;(3)x2-3x-7=0;(4)3x2-8x+4=0;(5)6x2-11x-10=0;(6)2x2+21x-11=0.
[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6). [师]各组做完了没有? [生齐声]做完了.
[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.
[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即 x2-3x-7=0,x2-3x=7,x2-3x+32=7+32 应为(-)2.
[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢? [生乙]方程(3)的解为x1= [师]好,继续.
[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=,x2=-.
[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即
方程(2)的解:x1=5,x2=3,方程(4)的解:x1=2,x2=,方程(6)的解:xl=,x2=-11.
[师]利用配方法求解方程时,一定要注意:
①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.
②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.
另外,大家在利用配方法求解方程时,要有一定的技能.这就??
?373?37.,x2?22要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.
这节课我们就来解决一个实际问题.
Ⅱ.讲授新课
[师]看大屏幕.(出示投影片§ 2.2.3b)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗? [师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法. [生甲]我们组 的设计方案如右图 所示,其中花园四 周是小路,它们的 宽度都相等.
这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.
[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由. [生乙]甲组的设计符合要求.
我们可以假设小路的宽度为x m,则根据题意,可得方程(16-2x)(12-2x)= ×16×12,也就是x2-14x-24=0.
然后利用配方法来求解这个方程,即
12 x2-14x+24=0,x2-14x=-24,x2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.
∴x1=12.x2=2.
因此,小路的宽度为2 m或12 m.
由以上所述知:甲组的设计方案符合要求.
[生丙]不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.
[师]大家来作判断,谁说的合乎实际? [生齐声]丙同学说得有理.
[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案. [生丁]我们组的设计方案如右图.
我们是以矩形的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.
因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得
πx2=×12×16.
解得x=±9612?≈±5.5.
因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求. [生戊]由丁同 学组的启发,我又 设计了一个方案,如右图.
以矩形的对角
线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.
[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.
[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?
[生庚]我们组 设计的方案如右图. 顺次连结矩形 各边的中点,所 得到的四边形即 是作为花园的场 地.
因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即×6×8),所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.
[生辛]我们组设计的方案如下图. 12
图中的阴影部分可作为建花园的场所.
因为阴影部分的面积为96 m2,正好是矩形面积的一半,所以这个设计也符合要求. [生丑]我们组 设计的方案如右图.
图中的阴影部 分可作为建花园的场地.
经计算,它符合要求.
[生癸]我们组的设计方案如下图.
图中的阴影部分是作为建花园的场地. [师]噢,同学们能帮癸组求出图中的x吗? [生]能,根据题意,可得方程 2×(16-x)(12-x)=×16×12,即x2-28x+96=0,x2-28x=-96,x2-28x+142=-96+142,(x-14)2=100,x-14=±10.
∴x1=24,x2=4.
因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 1212 接下来,我们再来看一个设计方案.
Ⅲ.课堂练习
(一)课本p55随堂练习1 1.小颖的设计方案如图所示,你能帮助她求出图中的x吗?
解:根据题意,得
(16-x)(12-x)= ×16×12,即x2-28x+96=0.
解这个方程,得 x1=4,x2=24(舍去).
所以x=4.
(二)看课本p53~p54,然后小结.
Ⅳ.课时小结
本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.
另外,还应注意用配方法解题的技能.
Ⅴ.课后作业
(一)课本p55习题2.5
1、2
12(二)1.预习内容:p56~p57 2.预习提纲
如何推导一元二次方程的求根公式.
Ⅵ.活动与探究
汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离s甲(米)与车速x(千米/时)之间有下列关系:s甲=0.1x+0.01x2;乙种车的刹车距离s乙(米)与车速x(千米/时)的关系如下图所示.
请你就两车的速度方面分析相碰的原因.
[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连.
由甲车的刹车距离和车速的关系式s甲=0.1x+0.01x2,又s=12,从而可求得甲
车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关
甲系,因而可设为x乙=kx,又其过点(60,15),从而得到k值,由10[结果] 解:对于甲车:
∵甲车刹车距离为12米,根据题意,得 12=0.1x+0.01x2.
解这个方程,得x1=30或x2=-40(舍去),即甲车的车速为30千米/时,不超过限速.
对于乙车:
由图象知,其关系是一个正比例函数,设此函数为x乙=kx ∵经过点(60,15),∴15=60k,∴k=,即此函数解析式为s乙=x 根据题意,得10∴40∴乙车超过限速40千米/时的规定.
∴就速度方面分析,两车相碰的原因在于乙车超速行驶. 板书设计
§2.2.3 配方法(三)
一、实际问题的设计方案: 设计方案一: 设计方案二: 设计方案三:
设计方案四:
二、课堂练习
三、课时小结
四、课后作业
初中数学教案模板篇3
江夏区初中历史学科课时集体备课教案
江夏区初中历史学科课时集体备课教案
备课思路:
第11课《英国资产阶级革命》是第四单元“步入近代”中很重要的一课,在世界近代 史上具有里程碑的地位。
1、本课的教学目标的确定,从知识目标、能力目标和情感目标三个方面分别确定为:知识 目标:通过本课的学习,使学生了解英国资产阶级革命的历史,包括革命前夕英国资本主义的发展及封建王朝的专制统治;革命的经过;《权利法案》的颁布和君主立宪制的确立等基本史实。能力目标: 引导学生探究英国资产阶级革命的原因,培养学生综合分析历史问题的能力,通过对克伦威尔的评价,培养学生初步用历史唯物主义观点正确评价历史人物的能力。情感目标:通过本课的学习,使学生认识到英国资产阶级革命,是人类历史上资本主义制度对封建制度的一次重大胜利。
2、本课的教学重点是英国资产阶级革命爆发的原因和历史意义。从原因上来看,应该从当时英国社会现象和社会矛盾的分析,概括出英国的封建专制统治严重阻碍了资本主义的发展是英国资产阶级革命爆发的根本原因。苏格兰人民起义是英国资产阶级革命的导火线,也就是直接原因。
3、本课的教学难点是英国资产阶级革命的曲折性。教学中,教师应从英国资产阶级革命的过程的讲解,帮助学生认识到英国资产阶级革命并不是一帆风顺的,历经多次的反复,最终才取得革命的成功。
4、教学方法采用区教研室历史导-预-议-讲-练五步教学法。首先对文艺复兴和新航路开辟相关知识点的复习,从文艺复兴和新航路开辟对资本主义制度的产生的影响导入本课的学习。 通过预习让学生对本课所讲知识有个初步的了解,同时也培养了学生良好的预习习惯,掌握好的学习方法。教师讲解应根据课标要求和学生预习情况有重点的讲解,体现有针对性,不能平均使用力量,更不能面面俱到。师生共同探究是历史导-预-议-讲-练五步教学法中的重点,也是课堂教学的精彩环节,教师应巧设问题,充分调动全体学生积极参与知识的形成过程,培养他们分析问题、解决问题和概括总结历史结论的能力。
5、练习是对学生所学知识掌握情况的一个检查,练习的设计应抓住重点,不能面面俱到,求多求全。教师要根据课标要求和学生实际精心选编,力求事半功倍。
初中数学教案模板篇4
一、教学目的:
1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;
2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
二、重点、难点
1.教学重点:菱形的两个判定方法.
2.教学难点:判定方法的证明方法及运用.
三、例题的意图分析
本节课安排了两个例题,其中例1是教材p109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.
四、课堂引入
1.复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1 菱形的四条边都相等;
性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.【探究】(教材p109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?
通过演示,容易得到:
菱形判定方法1 对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:
(1)是一个平行四边形;
(2)两条对角线互相垂直.
通过教材p109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2 四边都相等的四边形是菱形.
五、例习题分析
例1 (教材p109的例3)略
例2(补充)已知:如图 abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.
求证:四边形afce是菱形.
证明:∵ 四边形abcd是平行四边形,
∴ ae∥fc.
∴ ∠1=∠2.
又 ∠aoe=∠cof,ao=co,
∴ △aoe≌△cof.
∴ eo=fo.
∴ 四边形afce是平行四边形.
又 ef⊥ac,
∴ afce是菱形(对角线互相垂直的平行四边形是菱形).
※例3(选讲) 已知:如图,△abc中, ∠acb=90°,be平分∠abc,cd⊥ab与d,eh⊥ab于h,cd交be于f.
求证:四边形cehf为菱形.
略证:易证cf∥eh,ce=eh,在rt△bce中,∠cbe+∠ceb=90°,在rt△bdf中,∠dbf+∠dfb=90°,因为∠cbe=∠dbf,∠cfe=∠dfb,所以∠ceb=∠cfe,所以ce=cf.
所以,cf=ce=eh,cf∥eh,所以四边形cehf为菱形.
六、随堂练习
1.填空:
(1)对角线互相平分的四边形是 ;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线 的四边形是菱形.
2.画一个菱形,使它的两条对角线长分别为6cm、8cm.
3.如图,o是矩形abcd的对角线的交点,de∥ac,ce∥bd,de和ce相交于e,求证:四边形oced是菱形。
七、课后练习
1.下列条件中,能判定四边形是菱形的是 ( ).
(a)两条对角线相等 (b)两条对角线互相垂直
(c)两条对角线相等且互相垂直 (d)两条对角线互相垂直平分
2.已知:如图,m是等腰三角形abc底边bc上的中点,dm⊥ab,ef⊥ab,me⊥ac,dg⊥ac.求证:四边形mend是菱形.
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
初中数学教案模板篇5
初中数学教案模板
简易方程(二)一、教学目标(一)知识教学点
1.了解;方程算术解法与代数解法的区别。2.掌握:代数解法解简易方程。(二)能力训练点
1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。
2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。
(三)德育渗透点
1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。
2.渗透化“未知”为“已知”的化归思想。(四)美育渗透点
通过用新的方法解简易方程,使学生初步领略数学中的方法美。二、学法引导
1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。
2.学生学法:识记→练习反馈 三、重点、难点、疑点及解决办法 1.重点:代数解法解简易方程。
2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。
3.疑点:代数解法解简易方程的依据。 四、课时安排 1课时
五、教具学具准备
投影仪或电脑、自制胶片。六、师生互动活动设计
教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。
七、教学步骤
(一)创设情境,复习导入 (出示投影1)
引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?
师:该问题如何解决呢?请同学们考虑好后写在练习本上.学生活动:解答问题,一个学生板演.师生共同订正,对照板演学生的做法,师问:有无不同解法? 学生活动:回答问题,一个学生板演,其他学生比较两种解法.问;这两种解法有什么不同呢?
学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.[板书]简易方程(二)探索新知,讲授新课
师:谈到方程,同学们并不陌生,你能说明什么叫方程吗? 学生活动:踊跃举手,回答问题。[板书]含有未知数的等式叫方程
接问:你还知道关于方程的其他概念吗? 学生活动:积极思考并回答。[板书]方程的解;解方程
追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。
[板书]
学生活动:相互讨论达成共识(合理。因把x=5代入方程3x+9=24,左边=右边,所以x=5是方程的解)
?教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。
师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。
(三)尝试反馈,巩固练习例1解方程(x/2)-5=11
问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?
学生活动:思考并回答.(师板书)
问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?
学生活动:思考并回答(师板书)解:方程两边都加上5,得(x/2)-5+5=11+5 x/2=16(x/2)*2=16*2 x=32
问:这个结果正确吗?请同学们自己检验.学生活动:练习本上检验并回答问题.(正确)
师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.学生活动:回答这两个问题.【教法说明】虽然解方程的过程由教师板书,但整个思路是由学生形成的,使新方法在学生头脑中越来越清晰,直到真正认识并掌握它,这样也体现了学生的主体性,由“学会”型向“会学”型转化,对培养学生的思维能力很有帮助.师:上题在我们共同努力下得以解决,下面看你们自己的表现怎样?
例2解方程=10。
学生活动:在练习本上做,一个学生板演.师生共同订正.师:这里虽不要求同学们检验,但今后希望同学们养成自我检查的良好习惯.【教法说明】通过例2的教学训练学生的判断能力及运算能力,树立矛盾转化思想.(四)变式训练,培养能力 (出示投影2)
1.(口答)解下列方程
学生活动:1、2题口答,3、4题在练习本上书写,可互相讨论,3、4题师巡回指导。
?教法说明】1题让学生困难同学回答,增强自信心;2题澄清模糊认识,可充分讨论,让学生各抒已见;3题较1题稍复杂,一是让学生体会新解法的优越性,二是培养学生观察分析解决问题的能力;4题其实也是解方程,目的是开阔学生思路,培养学生勇于探索、大胆求异的创新精神。
(五)归纳小结 (由学生归纳)
1.按照新方法解方程,一般采用下面两点: (1)方程两边都加上(或减去)同一适当的数;(2)方程两边都乘以(或除以)同一适当的数。2.为了保证运算准确,养成检验的习惯。八、随堂练习1.选择题 九、布置作业
(一)必做题:课本第31页a组1.(2)(4)、2.(1)(3)(5)(二)选做题:思考课本b组1、2。十、板书设计 附:简易方程 随堂练习答案 探究活动
甲、乙二人从相距30m的两地同向而行,甲每秒走7m,乙每秒走,如果甲先出发1秒钟后,乙才出发,求甲出发后几秒钟追上乙?
解法(-)设甲出发后x秒追上乙,则甲走的路程为7xm,乙比甲晚1秒钟出发,乙少走1秒钟,此时,乙走的路程为(x-1)m,甲追上乙表示甲比乙多走30m。根据题意列出方程是:7x=(x-1)+30
解得x=47(秒)
答:甲出发后47秒追上乙.解法(二)设甲出发后x秒追上乙,甲先走1秒钟,甲先走了7*1=7m,这样甲追上己只需多走30-7*1=23(m).这时甲、乙二人都走了(x-1)秒,甲走的路程为7(x-1)m,乙走的路程为(x-1)m,乙比甲走的路程少30-7*1=23(m),根据题意列出方程是: 7(x-1)=(x-1)+7(x-1)解得x=47(秒)
答:甲出发后47秒追上乙.解法(三)设已出发后x秒,甲追上乙,因为甲先走1秒,所以甲走了(x+1),乙走了x秒,甲走的路程比已走的路程多30m,依据此等量关系列出方程为:7(x+1)-=30
解得x=46秒
甲走的时间为x+1=47(秒)答:甲出发后47秒追上乙.
初中数学教案模板5篇相关文章: